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The fundamental problem of 
communication is that of reproducing at 
one point either exactly or approximately a 
message selected at some other point. 
Frequently the messages have meaning; 
that is they refer to or a correlated with 
certain physical or conceptual entities. 
These semantic aspects of communication 
are irrelevant to the engineering problem. 
The significant aspect is that the actual 
message is one selected from a set of 
possible messages. The system must be 
designed to operate for each possible 
selection, not just the one which will 
actually be chosen since this is unknown at 
the time of design.
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The Syntactic Approach

• Birth of syntactic information theory was 
assisted by the development of telegraphy. 

• Major theoretical development in the 20s, 
culminated in the influential work of R.V.L. 
Hartley.

• Breakthrough with Claude E. Shannon's 
"Mathematical Theory of Communication".
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Roots of MTC

1894 Botlzmann's work in thermodynamics
1902 Gibb's work in statistical mechanics
1929 Leo Szilard's interpretation of entropy.
1928 R.V.L. Hartley's paper on information.
1932 John von Neumann's treatment of 
'information'
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The Shannon/Weaver 
Communication System I

The information 
source selects a 
desired message.

The transmitter changes 
the message into the 
signal.

The signal is sent over the 
communication channel from 
the transmitter to the receiver.

The distortions in the channel are called 
noise. They change the transmitted 
signal.

Eventually, the signal 
is changed back into 
a message by the 
receiver and handed 
on to the 
destination.
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The Shannon/Weaver Communication 
System II

Information
Source Transmitter

Noise
Source

Receiver Destination

Message

Signal
Received 

Signal

Message
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The Shannon/Weaver Communication 
System III

Information
Source Transmitter
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Source

Receiver Destination

Message

Signal
Received 

Signal

Message

Centre for the
Study of 
Logic,
Language, and 
Information

Manuel Bremer, Daniel Cohnitz
Information Flow and Situation Semantics

ESSLLI 2002

The Shannon/Weaver Communication 
System IV

Information
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Source
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The Shannon/Weaver Communication 
System V

Information
Source Transmitter

Noise
Source
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The Scope of Communication Theory I

1. Measures the amount of information (of 
situations as a whole).

2. Measures the capacity of the communication 
channel.

3. Determines at what rate a channel can convey 
information (given efficient coding).

4. Determines the eliminability of noise (given 
efficient coding).

5. Applies to discrete (written speech) and 
continuous (oral speech) communication.
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Intuitions Covered

The mathematical theory of communication covers 
some of the features of our common sense concept 
'information' which are intuitively quantitative:

(1) Information can be encoded. 
(2) Information is additive.
(3) Information is non-negative.
(4) Information decreases uncertainty.
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Borderline cases of information 
sources

Consider Poe's raven who 
produces only one symbol, 
"nevermore". If informer and 
informee share the same 
background information 
about the collection of the 
usable symbols, it is obvious 
that a unary device like the 
raven produces zero amount 
of information.* 

*Examples taken from Floridi forthcoming

nevermore

informer

informee
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Information and Uncertainty

Consider a system which is slightly more complex than our 
raven. Consider a binary device like a fair coin A, with its 
two equiprobable symbols {h, t}.
If we are the receiver, know the source, and wait for a 
symbol, we are uncertain as to which symbol the source will 
produce. We are in a state of data deficite, the "uncertainty" 
in Shannon's terms.
Once we receive a symbol, say 'h', our uncertainty decreases, 
and we remark that we have received some information. That 
is the connection between information and uncertainty. Now, 
how can information be measured? 
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Information and its Measurement
Once the coin has been tossed, the system produces an amount of raw 
information that is a function of the possible outputs, in this case 2 
equiprobable symbols, and equal to the uncertainty it removes.

Let us now consider a more sophisticated source, say a complex system, 
made of two fair coins A and B. The AB system has the capacity to 
produce 4 different outputs: 
<h, h> , <h, t>, <t, h>, <t, t>. 
This source generates a data deficit of 4 units, each couple counting as a 
symbol in the source alphabet.
In this more complex system, the occurrence of each symbol contains 
more raw information than the occurrence in system A did. Adding an 
extra coin would produce a 8 units of uncertainty, further increasing the 
amount of information carried by each symbol in the ABC system.
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Towards a formula of uncertainty

From our simple examples we can start to 
generalize. Let the number of possible 
symbols be denoted by 'N'. For N = 1, the 
amount produced by a unary device (like our 
raven) is 0.
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Towards a formula of uncertainty

For N = 2, by producing an equiprobale
symbol (as we assumed with our coin), the 
device delivers 1 unit of information, for N = 
4, the device delivers the sum of the amount 
of information (!) provided by the first coin 
(A) plus the amount of information produced 
by the second coin (although we arrive at the 
total number of symbols by multiplying A's 
symbols by B's symbols.
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Towards a formula of uncertainty

Our information measure, intuitively, should 
be a continuous and monotonic function of the 
probability of the symbols.

The most efficient way to achieve this is by 
using the logarithm to the base 2 of the 
number of possible symbols.

Log Functions and the 
Addition Law

A Brief Tutorial
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Some Mathematics for Shannon/Weaver, Carnap/Bar-
Hillel - The Basics

Understanding the Log Function. In the mathematical operation of 
addition we take two numbers and join them to get a third:

1 + 1 = 2

We can repeat this operation:

1 + 1 + 1 = 3

Multiplication is the mathematical operation that extends this

3 × 1 = 3
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Multiplication

In the same way, we can repeat multiplication:

2 × 2 = 4
and 

2 × 2 × 2 = 8

The extension of multiplication is exponentiation:

2 × 2 = 22 = 4
and 

2 × 2 × 2 = 23 = 8

This is read "two raised to the third is eight".
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Exponentiation

Because exponentiation simply counts the number of 
multiplications, the exponents add: 

22 × 23 = 22+3 = 25

The number "2" is called the base of the exponentiation. 
If we raise the exponent to another exponent, the values 
multiply:

(22)3 = 22 × 22 × 22 = 22+2+2 = 22×3 = 26
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The exponential function y = 2x is shown in this graph:
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Logarithm
Now consider that we have a number and we want to know how many 2's must 
be multiplied together to get 32? That is, we want to solve this equation:

2B = 32

Of course,  25 = 32, so B = 5. To be able to get a hold of this, mathematicians 
made up a new function called the logarithm:

log2 32 = 5

We pronounce this as "the logarithm to the base 2 of 32 is 5". It is the "inverse 
function" for exponentiation.

and log2 (2a) = aaaa =log2
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The logarithmic function y = log2x is shown in this 
graph:
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The Addition Law
Consider this equation:

2a + b = 2a × 2b

Take the logarithm of both sides:

log2 2a + b = log2 (2a × 2b)

Since exponentiation and the logarithm are inverse operations, we 
can collapse the left side:

a + b = log2 (2a × 2b)

Centre for the
Study of 
Logic,
Language, and 
Information

Manuel Bremer, Daniel Cohnitz
Information Flow and Situation Semantics

ESSLLI 2002

The Addition Law

Now we substitute: log2 x = a and log2 y = b:

Again, exponentiation and the logarithm are inverse operations, so we can 
collapse the two cases on the right side:

log2 x + log2 y = log2 (x × y)

This is the additive property, Shannon was interested in.

End of tutorial!

)22(logloglog 22 loglog
222

yxyx ×=+
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Additivity

Hence, logarithms have the great advantage of 
turning multiplication of symbols into 
addition of information units, and by taking 
the logarithm to the base 2 we have the further 
advantage of expressing the units in bits.
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Information per symbol

Given an alphabet of N equiprobable symbols, 
we can rephrase some examples more 
precisely by using the following equation:

[1] log2 (N) = bits of information per symbol
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Information per symbol

log(8) = 38 symbols3 coins

log(6) = 2.586 symbolsdice

log(4) = 24 symbols2 coins

log(2) = 12 symbols1 coin (binary)

log(1) = 01 symbolraven (unary)

Bits of 
information per 
symbol

AlphabetDevice
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Life is unfair

In these examples we assumed that we are 
dealing with fair coins and an ideal dice. 
Unfortunately, life isn't fair and coins are 
always biased. 
Now, to calculate how much information a 
biased source can produce one needs to rely 
on the probability of the occurrences of 
symbols in a series of tosses.
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Calculating it

Compared to a fair coin, a slightly biased coin 
must produce less than 1 bit of information, 
but still more than 0. The raven produced no 
information at all because the occurrence of a 
string S of “nevermore” was not informative 
(not surprising), and that is because the 
probability of the occurrence of “nevermore” 
was maximum, so overly predictable.
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Calculating it

Likewise, the amount of raw information produced by the biased 
coin depends on the average informativeness (or average surprisal) 
of the string S of h and t produced by the coin, and S’s average 
informativeness depends on the probability of the occurrence of 
each symbol. 

The higher the frequency of a symbol in S the less raw information 
is being produced by the coin, up to the point when the coin is so 
biased to produce always the same symbol and stops being 
informative, behaving like the raven. So, to calculate the average 
informativeness of S we need to know how to calculate S and the 
informativeness of a ith symbol in general, and this requires 
understanding what the probability of a ith symbol (Pi) to occur is.



17

Centre for the
Study of 
Logic,
Language, and 
Information

Manuel Bremer, Daniel Cohnitz
Information Flow and Situation Semantics

ESSLLI 2002

Calculating it

The probability Pi of the ith symbol can be 
“extracted” from equation [1], where it is embedded 
in log(N), a special case in which the symbols are 
equiprobable. Using some elementary properties of 
the logarithmic function we have that:

[2] log(N) = –log(N–1) = –log(1/N) = –log(P)
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Calculating it

The value of 1/N = P can range from 0 to 1. The 
probability of “Hail Satan” is 0 if the raven is our source; 
P(h) + P(t) = 1, no matter how biased the coin is. 

[3] 1
1

=∑
=

N

i
iP
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Calculating it
We can now be precise about the raven: “nevermore” is 
not informative at all because Pnevermore = 1. Clearly, the 
lower the probability of occurrence of a symbol, the 
higher is the informativeness of an actual occurrence of 
it. The informativeness u of a ith symbol can be 
expressed by analogy with – log (P) in equation [2]:

[4] ui = –log(Pi)
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Calculating it
Next, we need to calculate the length of a general string S. 
Suppose that the biased coin, tossed 10 times, produces the string: 
<h, h, t, h, h, t, t, h, h, t>. The (length of the) string S (in our case 
equal to 10) is equal to the numbers of times the h type of symbol 
occurs added to the numbers of times the t type of symbol occurs. 
Generalizing for i types of symbols:

[5] ∑
=

=
N

i
iSS

1
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Calculating it

Putting together equations [4] and [5] we have that the 
average informativeness for a string of S symbols is the 
sum of the informativeness of each symbol divided by 
the sum of all symbols:

[6]

∑

∑

=

=
N

i
i

N

i
ii

S

uS

1

1
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Calculating it

Formula [6] can be simplified thus:

[7] i

N

i

i u
S
S∑

=1
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Calculating it

Now Si/S is the frequency with which the ith

symbol occurs in S when S is finite. If the length of 
S is left undetermined, then the frequency of the ith
symbol becomes the probability Pi. So, further 
generalizing formula [7] we have:

[8] ∑
=

N

i
iiuP

1
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The Formula

Finally, by using equation [4] we can substitute for 
ui and obtain

∑
=

−=
N

i
i PPH

1
12 symbol)per  (bits log
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Take a breath!
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Interpretation

This function represents the lower limit on the 
expected number of symbols required to 
code for the outcome of an event regardless 
of the method of coding, and is thus the 
unique measure of the quantity of 
information. It is the amount of information 
that would be required to reduce the 
uncertainty about an event with a set of 
probable outcomes to a certainty. 
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Adequacy

As derived by Shannon it is the only measure of information 
that simultaneously meets the three conditions of being 
continuous over the probability, of monotonically 
increasing with the number of equiprobable outcomes, and 
of being the weighted sum of the same function defined on 
different partitions of the probable outcomes. 

In the discrete and continuous forms, the uncertainty 
corresponds to the entropy of statistical mechanics and to 
the entropy of the second law of thermodynamics, and it is 
the foundation of information theory. 

Centre for the
Study of 
Logic,
Language, and 
Information

Manuel Bremer, Daniel Cohnitz
Information Flow and Situation Semantics

ESSLLI 2002

Maximum

Equation [9] indicates that the quantity of raw 
information produced by a device corresponds to the 
amount of data deficit erased and it is a function of 
the average informativeness of the (potentially 
infinite) string of symbols produced by the device. It 
is easy to prove that, if symbols are equiprobable, [9] 
reduces to [1] and that the highest quantity of raw 
information is produced by a system whose symbols 
are equiprobable (compare the fair coin to the biased 
one).
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Coding

Consider our AB system. Each symbol occurs with 0.25 
probability. A simple way of encoding its symbols is to 
associate each of them with two digits:
<h, h> = 00
<h, t> = 01
<t, h> = 10
<t, t> = 11
In this Code 1 a message conveys 2 bits of information, as 
expected. Do not confuse bits as bi-nary units of information 
(recall that we decided to use log2 only as a matter of 
convenience) with bits as bi-nary digits, which is what a 2-
symbols system uses to encode a message. 
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Coding

Suppose now that the AB system is biased, and that 
the four symbols occur with the following 
probabilities:
<h, h> = 0.5
<h, t> = 0.25
<t, h> = 0.125
<t, t> = 0.125
This system produces less information, so by using 
Code 1 we would be wasting resources. 
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Coding

A more efficient Code 2 should take into account the 
symbols’ probabilities, with the following outcomes:
<h, h> = 0 0.5 × 1 binary digit = .5
<h, t> = 10 0.25 × 2 binary digits = .5
<t, h> = 110 0.125 × 3 binary digits = .375
<t, t> = 111 0.125 × 3 binary digits = .375
In Code 2, known as Fano Code, a message conveys 1.75 bits 
of information. One can prove that, given that probability 
distribution, no other coding system will do better than Fano
Code.
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Redundancy

On the other hand, in real life a good codification is also 
modestly redundant. Redundancy refers to the difference 
between the physical representation of a message and the 
mathematical representation of the same message that uses no 
more bits than necessary. Compression procedures work by 
reducing data redundancy, but redundancy is not always a bad 
thing, for it can help to counteract equivocation (data sent but 
never received) and noise (unwanted data). A message + 
noise contains more data than the original message by itself. 
But the aim of a communication process is fidelity, the 
accurate transfer of the original message from sender to 
receiver, not data increase.
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Noise
Noise extends the informee’s freedom of choice in 
selecting a message, but it is an undesirable freedom and 
some redundancy can help to limit it. We are more likely to 
reconstruct a message correctly at the end of the 
transmission if some degree of redundancy counterbalances 
the inevitable noise and equivocation introduced by the 
physical process of communication and the environment. 
That is why, in a crowded pub, you shout your orders twice 
and add some gestures.
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The Fundamental Theorems

We are now ready to understand Shannon’s two 
fundamental theorems. Suppose the 2-coins biased 
system produces the following message: 
<t, h> <h, h> <t, t> <h, t> <h, t>. 
Using Fano Code we obtain: 11001111010. The next 
step is to send this string through a channel. 
Channels have different transmission rates (C), 
calculated in terms of bits per second (bps). 
Shannon’s fundamental theorem of the noiseless 
channel states that 
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The Fundamental Theorems

Let a source have entropy H (bits per symbol) and a 
channel have a capacity C (bits per second). Then it 
is possible to encode the output of the source in such 
a way as to transmit at the average rate of C/H – ε
symbols per second over the channel where ε is 
arbitrarily small. It is not possible to transmit at an 
average rate greater than C/H. 
(Shannon 1998, 59).
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The Fundamental Theorems

In other words, if you devise a good code you can 
transmit symbols over a noiseless channel at an 
average rate as close to C/H as one may wish, but, no 
matter how clever the coding is, that average can 
never be made exceed C/H. We have already seen 
that the task is made more difficult by the inevitable 
presence of noise. However, the fundamental 
theorem for a discrete channel with noise comes to 
our rescue:
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The Fundamental Theorems

Let a discrete channel have the capacity C and a discrete 
source the entropy per second H. If H ≤ C there exists a 
coding system such that the output of the source can be 
transmitted over the channel with an arbitrarily small 
frequency of errors (or an arbitrarily small equivocation) If H 
> C it is possible to encode the source so that the 
equivocation is less than H – C + ε where ε is arbitrarily 
small. There is no method of encoding which gives an 
equivocation less than H – C. 
(Shannon 1998, 71)
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Application

To learn how Information theory can help you 
in real-world situation, consider the following 
case you might have encountered frequently 
already:
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Damn Coins

You have a balance and 
nine coins. Eight of the 
nine coins are of equal 
weight. The ninth, 
however, is of different 
weight (but it is 
unbeknownst to you 
whether it is lighter or 
heavier than the others.)
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Damn Coins

Problem:
Develop a strategy to 
figure out by weighting 
only three times which 
coin differs in weight 
from the others and 
whether it is lighter or 
heavier than the others 
are.
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Possibilities

It seems reasonable to put always an equal number 
of coins onto the scales. In this case there are three 
possibilities:
1) the left scale goes down
2) the balance remains in equilibrium
3) the right scale goes down

Hence, the highest amount of information you can 
receive by weighing once is log 3 = 1.58 bits.
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Possibilities

Now weighing three times can possibly create 
4.74 bits of information. Being in the dark 
about i) which is the deviant coin and ii) 
whether it is lighter or heavier, you are asked 
to choose one possibility from a set of 18 
equiprobable ones.
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Solvability

Maybe we should first check whether the problem is 
solvable at all. For this the information we can 
receive by weighing three times should be higher or 
equal to the information that corresponds to the 18 
equiprobable outcomes. Luckily this is the case:

log 18 = 4.16 bit < 4.74 bit
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Strategy

Unfortunately there is quite a number of ways 
how to put the coins onto the scales. Now we 
want to use information theory to develop a 
strategy. 
It seems clever to get always the maximal 
information out of every single weighting.
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Strategy

How much information do we gain from one 
weighting? Some definitions:
Pl = Probability that the left scale goes down
Pb = Probability that the scales remain in 
equilibrium
Pr = Probability that the right scale goes down
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Application of the formula

Now we can apply our formula and see that the 
information gained by weighing once is

H = –(Pl log Pl + Pb log Pb + Pr log Pr)

Now we know, that H is at maximum if the 
probabilities are all equal. This strategy results in a 
simple rule: Weigh such that Pl = Pb = Pr for each 
single case.
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The way to solution

If we put n (1 ≤ n ≤ 4) coins onto the left scale 
and n onto the right, 9 – 2n coins will remain 
unweighted. In probabilities:
Pb = (9 – 2n)/9
Pl = Pr = n/9
If we want equiprobability, n has to be 3.
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The way to solution

Now we mark all coins from 1 to 9. In the first 
step we put 1, 2, 3 onto the left scale and 4, 5, 
6 onto the right. Now, either one of the scales 
goes down, or not. In case none goes down, 
we know that the weird coin is among 7, 8, 
and 9. Now we put 7, and 8 onto the scales 
and weigh a second time. Easy to see that this 
leads to a solution.
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The way to solution

Assume that after the first weighting the 
scales weren't in equilibrium. Now we'll use 
only 4 of the 6 coins we used in the first 
weighting to keep the probabilities at 1/3. To 
achieve this we have to move the weird coin 
with probability 1/2 from one scale to the 
other. 
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The way to solution

We can do this easily:

Remove 1 and 4 from the scales.
Interchange 2 and 5.
Leave 3 and 6 where they are.
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The way to solution

Now after the second weighting we will have three 
possible outcomes:

1. The scales remain in equilibrium, hence coin 1 
or 4 is the weirdo (and we simply weigh one of 
them with a normal coin).

2. If the scales are not in equilibrium but the 
situation is now inverted, 2 or 5 is the weirdo.

3. Scales not in equilibrium, situation the same, 3 
or 6 is the weirdo.
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Back to business

Looking at Shannon's theory, we can summarize the 
following:

1) The theory deals with the average amount of information 
produced by a source, not with the amount of 
information carried by a single signal (but it's not so 
complicated to get there, as we shall see).

2) The theory connects the analysis of information with the 
reduction of uncertainty.

3) The theory does not, however, analyze the content of 
information. It deals solely with the engineering 
problem.
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The Limits of Communication Theory 

"Frequently the messages have meaning; that is they refer to or are 
correlated to some system with certain physical or conceptual 
entities. These semantic aspects are irrelevant to the engineering 
problem." (Claude E. Shannon 1948)

"It is important to emphasize at the start that we are not concerned 
with the meaning or the truth of messages; semantics lies outside 
the scope of "mathematical information theory"." (E. Colin 
Cherry 1950)

"Information and uncertainty are technical terms that describe any 
process that selects one or more objects from a set of objects. 
We won't be dealing with the meaning or implications of the 
information since nobody knows how to do that 
mathematically." (T. Schneider 2000)
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