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Jack likes himself and every student 9
! ! d ! \i
np:J s\np/np s\np\(s\np/np) co: A\ s\np\(s\np/np)
like AV Az V(z)(z) AU.Ay.every (student)

(Aw.U(w)(y))
s\np\(s\np/np): \T Az.T(2)(z) A every (student)(Aw.T(w)(z))

\e
\e

s\np: Az.like(z)(z) A every(student)(Aw.like(w)(z))

s:like(j)(j) A every (student)(Aw.like(w)(j))

Figure 62: Analysis of Jack likes himself and every student

object, as in the following.
(70)  John showed Mary herself.

The apparent problem with this example is that the object Mary is consumed
before herself in our system. Morrill [1993] solves this problem with a wrapping-
based account of verbs like show, an idea originally developed by Bach [1984]. In
Morrill’s analysis, ditransitive verbs may apply to their more distant object be-
fore their nearer one. More specifically, showed __ herself wraps around Mary
to generate showed Mary herself. Under this approach, a different category is
required for the reflexive, but it is a natural analogue of the one we provided
above, the only difference being the direction of the bound noun phrase.

(71)  herself = s/npfrnp: AV e .V (x)(x)

To use this category for (70), we would need to employ slash introduction to
factor out the subject so that the reflexive could reduce. This category also
accounts for other occurrences of reflexives, such as the following.

(72)  The picture of himself taken last year still upsets Bill.

Of course, work remains to be done on limiting the possibilities for reflexive
binding, as there are well known syntactic limitations on its application. Again,
the reader is referred to Morrill [1990, 1992b] for a general account of domains
of locality.
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[s\np/np: V]° himself ;
s\npfinp: )\U.)\ac.U(ac)(ac)ﬂe3
npry Je
s\np: V(y) 1e?
s: Ax.V(z)(z) \i0
s\np\(s\np/np): A\V.z.V(z)(z)
[np: «]* [s\np/np: V]° every student

sfinp: every (student)TT s
e

np:y Je
s\np: V(y) \e

s:V(y)(z) fe®

s: every (student)(Ay.V(y)(z)) \it
s\np: Az.every (student)(Ay.V(y)(z)) \i0

s\np\(s\np/np): A\V.Az.every (student)(Ay.V(y)(z))

Figure 61: Analysis of every student and himself

logic remains open.
In our system, though, we are still able to derive an analysis of the following
sentence.

(68) Jack likes himself and every student.

The analysis merely involves raising both the reflexive and the quantifier to
the category s\np\(s\np/np), which is accomplished by the derivation in Fig-
ure 61.2% The coordination of the two, along with their application, is given in
Figure 62.

Our lexical entry for the reflexive accounts for occurrences of reflexives in
environments such as the following.

(69) a. John believes he spilled coffee on himself.
b. John treated himself to coffee.
c. John gave a present to himself.

d. John gave himself a present.

What it doesn’t account for is cases where a reflexive object binds another

28Not coincidentally, this is the category Steedman [1985, 1988] assigns lexically to both
object quantifiers and reflexives.
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fred] likes ] himself ]
np: T s\np/np: like s\npﬂnp:)\V.)\ac.V(ac)(ac)ﬂ o
e
np:y Je
s\np:like(y) 160
s: Az like(z)(z)
\e

s: like(f)(f)

Figure 59: Analysis of fred likes himself

everyone likes ] himself ]
sfinp: eveI'y1ﬂ o s\np/np:like s\npfinp: )\P.)\x.P(x)(x)ﬂ R
T T e e
np:y np: T4 Je
s\np: like(z4) fe®
s: Az like(z)(z)

\e
s: like(y)(y) 160

s: every, (Ay.like(y)(y))

Figure 60: Analysis of everyone likes himself

its category, its semantic type is (Ind—Ind—Prop)—Ind—Prop. Thus the vari-
able V' in the above is the type of a transitive verb, and its semantics can be
seen as taking a transitive verb and reducing its semantics by applying twice
to the subject argument .

The simplest context in which reflexives may apply is as in Figure 59. An
example involving a quantified subject is equally straightforward. Such an
analysis is provided in Figure 60.

The incompleteness of our logic for the scoping connective can be seen when
we try to coordinate a reflexive and a quantifier. We would like to be able to
carry out the following derivation.

(67)  sfmp:a = s\npfinp: AV Ay.a(Ae.V(z)(y))

The reason we want this derivation is because if an expression is of category
sfinp, then it can act as a noun phrase and reduce in a sentence. But if this is
the case, it should also be able to act as a noun phrase and reduce in a verb
phrase. This is because we know that such sentential quantifiers can be reduced
in the context of verb phrases by the use of slash introduction for the subject, as
can be seen in previous derivations, such Figure 28. Qur proof theory is sound
with respect to our intuitive characterization of {}; the search for a complete
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only ] John g believed he failed g
sfinp/np: only sfinp: )\P.P(j)ﬂeo s\np: bel(fail(z))
np:x Je
sfrnp: only(z) e
np:y \e
s: bel(fail(z))(y) 12
s:only(z)(Ay.bel(fail(z))(y)) 160

s:only(j)(Ay.bel(fail(j))(y))

Figure 58: “Strict” Analysis of only John believed he failed

comparison class, in this case most likely the other members of the department,
much in the same way as comparatives involve implicit comparison classes. Just
such an approach is developed by Rooth [1985, 1992], in his general theory of
focus-sensitive elements such as only.

Possessive pronouns can be analyzed in exactly the same way as non-possessive
ones, by taking the pronominal element to be a variable. This gives us the fol-
lowing lexical entry for its, for example.

(64) its = np/n: AP..(Ay.P(y) A poss(y)(x)) [ € Var| 4]

Recall that poss(y)(x) holds if # is the possessor of y. In this case the variable
z, for the possessor, is picked up by binding. Thus we get the following analysis
for (7)a.

(65) every Englishman supports his football team =

s:every(Englishman)
(Az.support(:(Ay.fb_team(y) A poss(y)(z)))(x))

The variable z is simply picked up by the quantifier. Of course, the alterna-
tive reading where his picks up its reference extra-sententially would involve
choosing a different variable for the possessive pronoun.

10.2. Reflezives

In this section, we consider the use of reflexive pronouns such as itself. Un-
der Moortgat’s [1990a, 1991] analysis, reflexives are treated as quantificational
elements. In particular, he provides the following lexical entry.

(66) itself = s\npfnp: AV e .V (x)(x)

What distinguishes the reflexive here as a quantifier is the fact that it reduces
semantically at the verb phrase level, rather than at the sentential level. Given
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only ; John] [np: z]° believed he failedd

stopfupronly  wpij s\up: belfail(s)),
staponly() o s:bel(fail(z))(z) e
np:y s\up e bel(fail(0)(+) |

s: bel(fail(y))(y) 10

s:only(j)(Ay.bel(fail(y))(y))

Figure 57: “Sloppy” Analysis of only John believed he failed

as shown in Figure 57, to derive the so-called sloppy reading of a pronoun in
a verb phrase such as (7)b, the existence of which was first noted by Geach
[1962]. While we do not treat verb-phrase ellipsis, we believe that our approach
to anaphora, coupled with a categorial grammar allowing slash introduction,
provides a means of analyzing verb phrases in a way that makes them available
as “sloppy” antecedents. For instance, consider the following example.

(62)  John believes he passed and Bill does too.

Here Bill’s belief can either be about Bill’s passing or about John’s passing.
If the verb phrase is analyzed as in Figure 57, then the ellided verb phrase
can be identified with it to produce the sloppy reading of (62). No additional
mechanism is necessary beyond that which falls out of the appropriate logic for
complementation.?”

The so-called strict reading of sentences such as (7)b, where John is the
only one who believed John failed, must be derived by one of two means. One
method involves standard referential discourse anaphora, as is needed for exam-
ples such as (60)a. But an alternative is open to us involving type raising the
complement to only and then quantifying it over the whole sentence. Such an
analysis 1s given in Figure 58. In general, this approach is acceptable because
the complement to only does not form a quantification island, as evidenced by
the following sentence.

(63)  Only the head of every department was invited.

Here we have the universal quantifier taking widest scope. But in addition, we
see with this example that there is an additional comparison class involved in
such quantification. The reading derived for this sentence, which says for the
head of each department, that that head was the only one invited is clearly
contradictory. Thus we must be reading the uniqueness with respect to some

27For the many other cases of sloppy readings in ellipsis, and related cases of gapping, the
approach of Solias [1992] appears promising. It remains to be seen whether or not the flexible
categorial approach outlined here solves some of the difficult problems posed for previous
“relational” accounts of ellipsis and gapping raised by Dalrymple, Shieber and Pereira’s [1991].
Of course, our grammatical approach is compatible with their logical reconstruction approach.
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The analysis of simple noun phrases occurring as bound antecedents can be
handled in the same way, by simply type-raising the noun phrases to quantifiers
and then proceeding as in Figure 56.

We could also provide a categorial analysis more directly in line with Mon-
tague’s PTQ. Suppose we had a category pro € Cat, which does not associate
with a semantic type. We could then use the following sequent rule to mimic
Montague’s term insertion rule.

(59) To, np:x, T1, np:z, ..., T'n, np:x, Do, np:x, A1, npiz, ..., Ay = ¢ o
Lo, pro, T'1, pro, ..., T'n, sfinp:a, Ag, pro, Ay, pro, ..., Ap = a(Az.¢)
[, > 0]

The only difference is that this rule does not allow for the possibility of un-
bound variables. We will stick to the simpler sequent scheme for quantifier and
pronominal entries with variables; but nothing in the present setting hinges on
this decision.

There are strict syntactic restrictions on the use of pronouns as bound vari-
ables. For instance, consider the following contrast.

(60) a. I like John; and he; likes me.
b. * 1 like [every boy]; and he; likes me.

We have already indicated that quantifiers are not allowed to escape from con-
juncts to take wide scope over the entire coordinate structure (see [Morrill
1990a, 1990b, 1992a, 1992b] for an account of locality restrictions in categorial
grammar consistent with our approach to quantification). This explains why
(60)b is ungrammatical. We do not deal with the kind of anaphora required to
handle cases such as (60)a. In general, referential occurrences of noun phrases
include not only proper names, but also definites such as the student and some
uses of indefinites such as a student.?®

In addition to the analyses afforded by PTQ, we also derive significant in-
teractions between our categorial system and pronouns. We consider first the
sentence (7)b, the analysis of which we adopt from [Carpenter 1989]. The dis-
course quantifier only is able to play many roles, but it is often used with noun
phrases to produce an exclusive quantifier. For this case, we can get by with a
lexical entry of the following form.

(61) only = sftnp/np: only

We further assume that the interpretation of only is such that only(z)(P) is
true if and only if # is interpreted as the only object with the property inter-
preting P. Pronominal co-reference can then interact with slash introduction,

28 Following Fodor and Sag [1982], we assume that indefinites are ambiguous between an
indefinite quantifier reading and a referential reading. In cases where indefinites provide an-
tecedents, they must be read referentially. For instance, we cannot take a movie as both
having narrow scope and providing an antecedent for the pronoun in cases such as the fol-
lowing.

Every semanticist read [a paper];. It; was by Montague.
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every student g believed ] he ] failed

sﬂnp:evelt'y(student)ﬂ o S\np/s:bel np: v s\np:fail\
e e

np:x s: fail(z)

/e
s\np: bel(fail(z)) \e
s:bel(fail(z))(z) e

s:every (student)(Az.bel(fail(z))(z))

Figure 56: Analysis of every student believed he failed

10.1. Variable Pronouns

We begin with the pronouns to which we assign a variable semantics, following
Montague [1970b]. Our lexical entries for subject and object pronouns take the
following general form.?®

(56) she = np:x [z € Var| 4]

Note that like Montague’s analysis, this makes pronouns infinitely ambiguous,
as there are countably infinitely many individual variables.

We are able to use these pronominal lexical entries to derive bound occur-
rences of pronouns, as shown in Figure 56. Here we see the bound-variable
reading, which requires the variable introduced by the pronoun to be identical
to that introduced by the quantifier. If a different variable were introduced, the
resulting reading would be the following.

(57) every(student)(Az.bel(fail(y))(x))

For this latter derivation to be useful, we must assume that some discourse
process identifies the contents associated with free variables, as in Discourse
Representation Theory [Kamp 1984] or File-Change Semantics [Heim 1982]. A
similar process might also account for deictic (demonstrative) uses of pronouns,
which pick up referents by extra-linguistic means, as in the following examples

[Kaplan 1979].

(58) a. Don’t go in there. He’s awfully upset today.
b. John got a hit. It sailed right out of the park.
In the first case, the occupant of the office might be the antecedent of the

pronoun, and in the second case, it is likely the baseball that was hit. But
neither referent is available directly from the discourse.

25 As we mentioned earlier, we are not concerned here with matters of syntactic case. Thus
object-position, subject-position and even genitive complement position pronouns such as
hers are assigned the same categories. As far as agreement goes, we believe the most natural
approach is to adopt a referent-based approach such as that developed by Barlow [1988] and
by Pollard and Sag [1992, in press]. Such an approach sorts the variables according to the
agreement facts of the language in question (gender, number and case in English), and only
allows quantifiers to bind variables of a single type.
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take either relatively wide or narrow scope. This is accomplished by analyzing
the conjuncts in one of two ways, as shown previously in Figure 28, and then
carrying out the rest of the reduction by slash elimination. The way in which the
conjuncts are analyzed is independent, thus leading to four possible readings for
(5)f. Only two of these readings are natural, and they involve parallel analyses
of the conjuncts, thus giving the external quantifier either wide or narrow scope
with respect to both quantifiers. But we believe such a restriction is pragmatic,
rather than syntactic or semantic.

A similar analysis allows us to treat the Partee and Rooth examples as being
more ambiguous than originally noted. In general, it is possible in sentences
with an intensional verb in which the object is the coordination of two quanti-
fiers to allow one of the conjuncts to be read de dicto, and the other de re. For
instance, consider the following sentences.

(55) a. The princess sought [a sword]; and [a knight to wield it;].

b. The tourist sought a shop he had seen the day before or another one
with similar merchandise.

c. The professor was looking for a pen she misplaced and something on
which to write.

In the first example, the princess could have a particular sword in mind, thus
taking it to be de re, while the desire for the knight to wield it might be de
dicto. These mixed de dicto/de re examples are generated by type raising the
objects, one in a de dicto fashion and one in a de re fashion before coordinating
them. In the second example, a particular shop from the day before could be
de re, even if there were many such shops, while the new one would most likely
be read de dicto. As we will see in the next section, for the coreference to work
with the pronoun in the first example, and with the adjective similar in the
second, the first conjunct in both cases must be read de re. Again, we believe
the reason such usages are not more common is a pragmatic tendency to read
coordinate structures in a parallel fashion.

10. QUANTIFICATION AND PRONOMINAL DEPENDENCY

In this section, we take up the issue of the reference of third-person pronominals
in cases in which they are bound intra-sententially by quantifiers. For standard
pronouns, such as subject-position he, object-position his, and determiner his,
we follow Montague in providing a variable for the semantics of the bound
element. For reflexives, such as herself, we follow Moortgat [1990a, 1991] in
employing a binding operator, along the lines of our approach to quantifiers.
We do not consider pronouns bound by discourse conventions either within or
across clauses. We also do not discuss indexical pronouns such as me, you or
now; our analysis is compatible with those in which indexicals pick up their
references by contextual means [Bar-Hillel 1954, Montague 1970b].
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John] sought a pen or a pencil

l d
np:J s\np/(sfinp): seek sfinp
Az.some(pen)(z) V some(pencil)(z)

/e
\e

s\np: seek(Az.some(pen)(z) vV some(pencil)(z))

s:seek(Az.some(pen)(z) V some(pencil)(z))(j)

John] sought ] a pen or a pencil g
np:j s\np/(sfinp): seek sfinp: Az.some(pen)(z) vV some(pencil)(ac)ﬂ 0
e

np:y .

np: AP.P(y)

/e

s\np: seek(AP.P(y)) \

e
s:seek(AP.P(y))(j) 0

fre

s:some(pen)(Ay.seek(AP.P(y))(j)) V some(pencil)(Ay.seek(AP.P(y))(j))

John] sought ; [s\np/(sftnp): V]? a pen or a pencil

/e l d
np:j s\np/(sfinp) sfrnp co:V s\np\(s\np/(sfrnp))
seek some(pen)/6 AU.U (some(pencil))

s\np: V(some(pen)) \i2
s\np\(s\np/(sftnp))
AV.V (some(pen)) o

s\np\(s\np/(sftnp))

AW. Az W (some(pen))(z) V W (some(pencil))(z) \e

s\np: Az.seek(some(pen))(z) V seek (some(pencil))(z) \e

s:seek(some(pen))(j) V seek(some(pencil))(j)

Figure 55: Analysis of John sought a pen or a pencil

verbs take coordinated objects, as evidenced by examples such as (5)e. We
provide the three analyses in Figure 55. Continuing with the examplesin (5), we
have a case in (5)f in which two “non-constituents” containing a quantifier are
coordinated. The coordinated element can be analyzed using slash introduction
as seen previously in Figure 33. A similar analysis for every student disliked
along with the obvious application of coordination and slash elimination yields
the unique reading of (5)f.

The final case we consider is (5)g, where there is a quantifier embedded in a
conjunct that interacts with a quantifier outside of the conjunct, in that it can
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every ] Vegetarianl and ] socialistl
sfinp/n: every n:veg co: A n:s80C o
n: Az.veg(z) A soc(z) Je
sfinp: every (Az.veg(z) A soc(z))
every | [sfinp/n: DT? Vegetarianl and ; [sfinp/n: E]* socialistl
sfinp/n n:veg Je co: A n:s80C Je

every sfinp: D(veg) \i2 sfinp: E(soc) \i#
strnp\(sfinp/n): AD.D(veg) sfrnp\(sfrnp/n): )\E.E(Soc){’e
stinp\(sfinp/n): A\F.AP.F(veg)(P) A F(soc)(P) \e

sfinp: AP.every(veg)(P) A every(soc)(P)

Figure 53: Analysis of every vegetarian and socialist

every student g passed ] or , failed
sfinp s\np: pass co:V s\np: fail{’e
every(student)ﬂeo s\np: Az.pass(z) V fail(z)
np:y \e
s: pass(y) V fail(y) 160

s: every (student)(Az.pass(z) V fail(z))

every student p [sfinp: Q1]1ﬂ63 passed ; o [sfinp: Q2]5ﬂe7 failed

sfinp np:x s\np: pass co:V np:y s\np: fail
tudent) \e . \e
every (s s:pass(z) 1e? s: fail(y) fe”
s: Q1 (pass) \it s: Q2 (fail) \io
s\(sfinp): AQ1.Q1 (pass) s\(sfinp): AQ2.Q2(fail) o

s\(sfinp): AQs.Qs(pass) V Qs (fail)
s: every (student)(pass) V every (student)(fail)

\e

Figure 54: Analysis of every student passed or failed

in (5)d. The two analyses of this sentence are provided in Figure 54. A similar
form of analysis, involving hypothetical reasoning for type raising, accounts for
the ambiguities noted by Partee and Rooth [1983], which arise when intensional
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John] and ] every prof g
np:j . co: A sfinp: every (prof)
np: AP.P(j) e

sfinp: AR.R(j) A every(prof)(R)

Figure 51: Analysis of John and every prof

a student g likes ] John and every prof g
sfinp: some(student)ﬂ o s\np/np:like stnp: AP.P(j) A every(prof)(P) .
e e
np: T np:y Je
s\np: like(y)
\e
s:like(y)(x) 1e?
s:like(j)(z) A every (prof)(Ay.like(y)(z)) 160
e
s:some(student)(Az.like(j)(z) A every(prof)(Ay.like(y)(z)))
a student g likes ] John and every prof g
sfinp: some(student)ﬂ o s\np/np:like snp: AP.P(j) A every(prof)(P)
e e
np: T np:y Je
s\np: like(y)
\e
s:like(y)(x) e
s: some(student)(like(y)) 160
e

s:some(student)(like(j)) A every (prof)(Ay.some(student)(like(y)))

Figure 52: Analysis of a student likes John and every prof

in Figure 51. The coordination of a pair of quantifiers acts just like other
quantifiers in their ability to scope. This allows us to derive scope ambiguities
as shown in Figure 52.

The interaction between coordination and quantification becomes more in-
teresting when the scope or restriction of a quantifier is coordinated. The
correct results follow from our logical approach without the addition of further
mechanisms. For instance, consider the two possible analyses of the subject of
(5)c, given in Figure 53. The first of these analyses quantifies over individuals
who are both socialists and vegetarians. The second provides a quantifier which
universally quantifiers over vegetarians and over socialists independently.

A similar analysis accounts for examples where the scope is coordinated, as
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Cedric kicks or John hits Fred
d ! d !

s/np: Az kick(z)(c) coor:V s/np: Ay.hit(y)(j) np: T
ce

s/np: Az kick(z)(c) v hit(z)(j)

/e
s: kick(f)(c) v hit(f)(j)
Figure 48: Analysis of John hits or Cedric kicks
[s\np/np/np: V]° Dan ] Fidol
np: d/e np: f
s\np/np: V(d)
/e
s\np: V(d)(f) \0°
s\np\(s\np/np/np): \V.V(d)(f)
Figure 49: Analysis of Dan Fido
a prof and every student attended the lecture
d l d d
sfinp co: A\ sfinp s\np: att(s(lec))
some(prof) every (student)

ce

sfinp: AP.some(prof)(P) A evelt'y(student)(P)ﬂ o
e

npry

\e
fre’

s:att(«(lec))(y)
s:some(prof)(att(c(lec))) A every(student)(att(:(lec)))

Figure 50: Analysis of a prof and every student attended the lecture

Here we simply use our standard hypothetical reasoning, as shown in Figure 49.
Such an analysis can be used to produce the following derivation.

(54)  Max sold [Tim Fido] and [Joe Felix] =
s:sell(t)(fido)(m) A sell(j)(felix)(m)

We now turn to the interaction of quantification and coordination. We begin
by considering the coordination of quantifiers, one of the motivating examples
for pTQ [Montague 1970b]. For instance, the analysis of an example like that
in (5)a is given in Figure 50. Here we see that quantifiers can be coordinated
because they are of boolean type. We can also coordinate noun phrases and
quantifiers by simply type raising the noun phrases. Such an example 1s given
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Coordination Left

Col

Arg cora At = A: Coor(a)(d) ()
Figure 45: Coordination Sequent Scheme

Coordination Elimination

A 1) co.: « A z/JFe
A: Coor(a)(¢) (%)

Figure 46: Coordination Sequent Scheme

in or on the box
l l l l l
n\n/np:in co:V n\n/np: on np/n:t n: box/e
n\n/np: Az AP Ay.(in(z)(P)(y)) np: ¢(box)
V (on(z)(P)(y)) Je

n\n: AP.Ay.in(¢(box))(P)(y) V on(«(box))(P)(y)

Figure 47: Analysis of in or on the box

this analysis would combine with a determiner and a noun phrase by slash
elimination to produce the following analysis:

(52)  the dog in or on the box =
np: «(Az.in(:(box))(dog) V on(:(box))(dog))

The analysis of coordination in categorial grammar is best known for its
ability to derive the correct results for so-called “non-constituent” coordina-
tion. Steedman’s [1985] approach combined type raising and composition, and
was later extended by Dowty [1988]. Lambek’s categorial grammar, with its
hypothetical reasoning mechanism, generalizes the notion of type raising and
composition to allow fully flexible coordination. For instance, consider the anal-
yses in Figure 48. For a similar example, recall the derivation in Figure 7, from
which we are able to analyze the following coordinate sentence:

(53)  [Bill hit] and [Fred believes Cedric kicked] Mark =
s:hit(m)(b) A believe(kick(m)(¢))(f)

A more interesting example involves the propositional analysis of a sequence of
two noun phrases, as first analyzed in Steedman’s framework by Dowty [1988].
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types is defined according to the following recursive scheme.

(49) a. Coor(a)(¢)(¥) = a(é)(¢) if ¢ and ¢ are of type Prop
b. Coor(a)(¢)(v) = Ax.Coor(a)(¢(2))(¥(x)) if ¢ and ¢ are of type

oc—7T, T a propositional type, and x a fresh variable of type o

More schematically, we have the following.

(50)  Coor(a)(¢)(¥) = Ay Aza. .. .. Ap.a(d(x1)(x2) - (2n))
(1) (x2) - (wn))

if ¢ and ¢ are of type 01—09— -+ - —0,—Prop

This exhausts the semantics of coordination as a propositional operator. The
discourse functions of coordination are by no means trivial, but fall beyond the
scope of this paper.

Syntactically, we allow arbitrary categories with propositional types to be
coordinated. Two related approaches to such coordination have been prevalent
in categorial grammar, one schematic and one lexical. The schematic approach
employs an inference scheme to carry out coordination, whereas the lexical
approach uses polymorphic lexical entries for coordinators. These methods are
identical in their semantic predictions.?? The lexical approach, developed by
Morrill [1990b, 1992a], provides a polymorphic lexical entry for coordinators,
such as the following:?*

(51) and = A\A/A: Coor(A) [Typ(A) is propositional]

Of course, this polymorphic lexical scheme has infinitely many instantiations,
one for each category with a propositional type.

The schematic approach is based on adding a new deductive scheme. We
introduce a new category co € Cat directly, as it does not need to interact
with other categories, and thus does not need to be a member of BasCat. We
assume co 1s of type Prop—Prop—Prop. The coordination schemes match the
effects of the polymorphic lexical entry given above. The sequent version of
coordination is provided in Figure 45, and its natural deduction counterpart in
Figure 46. An example of a simple coordination involving nominal prepositions
is given in Figure 47. For simplicity, the prepositional arguments are lowered
to noun phrases and their semantic contents taken to be constants. Of course,

23The syntactic distinctions expressible using the two approaches are beyond the scope of
this paper. For instance, we must block the coordination of two coordinators or coordinators
which have taken an argument, as evidenced by *ran [[and] but not [or]] jumped. See [Morrill
1992a] for further details.

24Not every category with a propositional type naturally occurs in coordinate structures,
though the boundary between he coordinable categories and the non-coordinable ones is not
well established. We will simply show how all categories with propositional types can be
coordinated, and leave aside potential syntactic restrictions. Because they do not introduce
additional semantic effects, we also pass over coordination of more than two expressions, as
in ran, biked and swam, and wrapping coordinators, as in either ran or jumped. A general
approach to particles and wrapping is provided by Morrill and Solias [1992].
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derivable for it from our grammar.

(48) a. What every student wrote upset a professor.

b. every(student)
(Az.some(prof)

(Ay.upset(y)(t(Az.write(z)(x)))))

¢. some(prof)
(Ay.every(student)

(Az.upset(y)(t(Az.write(z)(2)))))

d. some(prof)
(Ay.upset(y)(¢(Az.every(student)

(Az.write(z)(2)))))

The first of these readings is where a possibly different professor was upset by
the possibly different writing of each student. The second is where there was a
single professor who was upset by the possibly different writings of each student.
The last case, where the quantifier remains embedded, must be derived by a
method analogous to that used in Figure 33. It represents the case in which
there was a particular professor who was upset by what the students wrote, with
the further requirement that each student wrote the same thing. Thus, for the
case of free relatives, island constraints do not prevent embedded quantifiers
from escaping to take sentential scope. In fact, the first and second readings
given above are of this variety and are quite plausible for this sentence.

9. QUANTIFICATION AND COORDINATION

Categorial grammar has been particularly successful in its applications to co-
ordination [Steedman 1985, 1991; Dowty 1988; Solias 1992]. In this section,
we demonstrate how these results can be extended to coordinate structures in-
volving quantifiers in contexts such as those in (5). Our semantic treatment
of coordination preserves the fundamental insights of Montague [1970b], but
our categorial approach to syntax allows us to extend such analyses far beyond
what he achieved with his syntactic framework.

Semantically, our approach to coordination is a straightforward generalized
propositional one along the lines of [Gazdar 1980], which allows arbitrary propo-
sitional types to be coordinated. The set of propositional types is defined as the
least set such that: Prop is a propositional type, and o—7 is a propositional
type if 7 1s a propositional type. In other words, a propositional type is either a
proposition or a functional type whose range type is propositional. In general,
a propositional type is of the form o¢1—os— .- —0o,—Prop for some n > 0.
Coordinators are propositional functions taking two propositions to produce a
propositional result, and are thus of type Prop—Prop—Prop. In the simplest
case, terms of coordinator type can be applied to pairs of propositions to pro-
duce a proposition. But in general, coordinators can be applied to arbitrary
terms of matching propositional type by distributing the coordinator. The re-
sult of applying a coordinator « to terms ¢ and 1 of matching propositional
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every student g s approval ]

sfinp: every (student) , np/n\(sftnp) n: approval
Azs. Azs.e(Az2.za(z2) A o5 (poss(z2)))

np:ri

e
np: Azy.z4(21)

\e

np/n: Azs.e(Az2.x3(z2) A poss(z2)(z1))

/e

np: (Azz.approval(z2) A poss(zz2)(z1))

sfinp: AP.every(student)(Az. P(«(Ay.approval(y) A poss(y)(z))))

Figure 44: Blocked Analysis of every student’s approval

We have no problem generating the analyses in which the universal quantifier
takes wide scope. The problem is that we also need to generate a de dicto
reading of the embedded quantifier. For instance, the dean might not even
know all of the students in (45)a. In (45)b, the student might not even have a
journal in mind. To derive these readings, we need the following analysis of the

object of (45).

(46)  every student’s approval =
sfinp: AP.every(student)(Az. P(«(Ay.approval(y) A poss(y)(z))))

But such an analysis is not derivable using our proof theory, as can be seen
from Figure 44. The example in (45)c shows that we can not cure this problem
with a more ambitious lexical entry for the possessive marker. But the fault is
not due to our general logical approach, but is merely caused by the incomplete
proof theory in which we have chosen to couch it. According to our intuitive
explanation of the scoping constructor, {}, the analysis in Figure 44 should go
through, because the expression is such that it can act as an np and reduce
in a sentence with the semantic effect shown. A complete logic for quantifiers
remains an open problem, though the approach of Morrill and Solias [1992,
Morrill 1992a] is a step in the right direction. A further example of our logic’s
incompleteness arises in the section below on reflexives.

Moving on to the free relative, we provide the following lexical entry, similar
in spirit to the base generated analysis of Bresnan and Grimshaw [1978].%2

(47)  what = np/(sTnp):¢

Free relatives have interesting interactions with quantifiers, of the kind illus-
trated in (2)d. A related example is given below, along with the analyses

2?Rather than the universal interpretation assigned by Cooper [1983], we take the universal
force of free relatives under some circumstances to be an instance of genericity. In general,
we assume a generic reading to be possible for any definite or indefinite noun phrase.

We also do not consider the interesting case of whatever, although it appears to have some
kind of quantificational force, because the semantic nature of the quantification involved is
rather unclear [Cooper 1983; Bresnan and Grimshaw 1978].
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the ] receptionistl in ] every oﬂ?ced is underpaid
np/n:t n:rec n\n/(sfinp) sfinp s\np
AQAPAY.P(y) A Q(Az.in(z)(y)) every(oﬂ’)/e underpaid
n\n: AP.Ay.P(y) A every(off)(Az.in(z)(y)) \e
n: Ay.rec(y) A every (off)(Az.in(z)(y)) Je
np: t(Ay.rec(y) A every (off ) (Az.in(z)(y))) \e
s:underpaid(¢(Ay.rec(y) A every(off)(Az.in(z)(y))))
the ] receptionistl in ] every office . is underpaidl
np/n:t n:rec n\n/(sfinp) sfinp s\np

AQAPAyY.P(y) A Q(Az.in(z)(y)) evelt'y(oﬂ')ﬂ o underpaid

e
np:

S |

np: )\R.R(x)/e

n\n: AP.Ay.P(y) A in(z)(y) \e

n: Ay.rec(y) Ain(z)(y) Je

np: t(Ay.rec(y) Ain(z)(y))

s:underpaid(¢(Ay.rec(y) Ain(z)(y)))

s: every (off ) (Azr.underpaid(:(Ay.rec(y) A in(z)(y))))

Figure 42: Analysis of the receptionist in every office is underpaid

every student g ’s teacher

sfinp: every (student) np/n\(s{tnp) n: teacher
AQAP.(Az.P(x) A Q(poss(ac)))\6
np/n: AP.t(Az.P(z) A every(student)(poss(z)))

/e

np: t(Az.teacher(z) A every(student)(poss(z)))

Figure 43: Analysis of every student’s teacher

The following examples pose a problem for our incomplete logic of quantifi-
cation.

(45) a. The dean sought every student’s approval.
b. The student sought a journal’s acceptance.

c. John was seeking a conversation with every speaker at the conference.

\e
fre’
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the ] student ] studied

np/n:t n: student/ s\np: study
e

np: t(student)

\e
s:study(¢(student))

Figure 41: Analysis of the student studied

determiners, as in every professor, which i1s often not taken to refer to every
professor in the world, but merely to those in the appropriate context. We will
not propose a treatment for such contextualization, as it is a pragmatic rather
than semantic phenomena.

Our primary concern here is the interaction of definite descriptions with
quantifiers, which our theory correctly characterizes. For instance, consider
the two derivation of (2)f given in Figure 42. In the first of these derivations,
we have used a simple noun phrase complement category for the preposition.
This category 1s derivable from the more complex category for the preposition
given in the second example by a combination of slash introduction and type
raising. These derivations show that under our approach, definites can take the
appropriate scopes with respect to quantifiers.

Our treatment of possessives follows that of definites. The lexical entries
used to generate the example in (2)d is as follows.

(43) s = np/n\(stnp): A\Q.AP..(Ay.P(y) A Q(Az.poss(y)(x)))

Note that the constant poss introduced for the possession portion of the posses-
sive is shown in non-reduced format; applying n-reduction yields Q(poss(y)) as
a subterm in its lexical entry. The exact meaning of poss does not concern us
here, nor do the pragmatic restrictions on when possessives can grammatically
occur.?!

The narrow scope analysis of a quantifier is derived by application and is
shown in Figure 43. The wide scope analysis of quantifiers in possessive position
is analogous to other wide-scope occurrences: quantifier elimination is used to
introduce a noun phrase, which is then type raised and the function applied
to 1t, and the quantifier is allowed to reduce at an appropriate higher level
position. This allows for the ambiguity in examples such as the following.

(44) A teaching assistant marked every student’s exam.

Here there is an ambiguity as to whether the same teaching assistant marked
each of the exams, as well as the ambiguity as to whether there was one exam
for the students together, or whether each student had a separate exam.

?1Barker [1991] provides an in-depth analysis of both the proper semantics and use of
possessives that is compatible with our approach. He notes, for instance, that we can say
things like the chair’s leg but not usually the leg’s chair. Of course, this is clearly not a case
of possession except in the broadest sense.
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some journal p accepted ; [sfinp: Q]°

fre”

sﬂnp:some(jou](')ﬂe4 s\np/np: acc np:y Je
np: & s\np: acc(y)

\e

s:ace(y)(z) e’

s: Q(Ay.ace(y)(x)) et

s:some(jour)(Az.Q(Ay.acc(y)(x))) 10

sT(sfimp): AQ.some(jour)(Az.Q(Ay.acc(y)(z)))

some journal g accepted ; [SﬂnPZQ]Oﬂeg

sﬂnp:some(jou](')ﬂe4 s\np/np: acc np:y Je
np: & s\np: acc(y)

\e

s:ace(y)(z) et

s:some(jour)(acc(y)) 0e?

s: @(Ay.some(jour)(acc(y))) 10

sT(sfinp): AQ.Q(Ay.some (jour)(acc(y)))

Figure 40: Analysis of some journal accepted

This is for the same reason that such analyses can not be generated in the
standard cases of relative clauses — derivations must be nested.

8. DEFINITES AND QUANTIFIERS

We assume a referential treatment of the definite determiner the, in which it
behaves as a function from properties to the unique individuals satisfying them.
The appropriate lexical entry for this treatment 1is:

(42)  the = np/n:¢

As usual, ¢ is the description operator of type (Ind—Prop)—Prop, with the re-
striction that «(P) = z if # is the unique individual such that P(z) is true
(see [Andrews 1986], for example). We will not worry about the converse con-
dition when there is no # or more than one z such that P(z) is true, as we
assume this situation corresponds to a presupposition failure. An example of a
derivation involving a definite is provided in Figure 41. Context is significant
in nominal interpretation. In particular, the property contributed by the noun
can be further restricted by context. Thus an utterance of the receptionist can
uniquely determine a referent if the context restricts attention to the appropri-
ate receptionist. This is exactly the same phenomena as occurs with quantified
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which

g(n\n/(s1np), np, np)
AAAVAPAC.P(z) AV(A(z))

ge
npry qeo
n\n/(sTnp): A\V.AP.Az.P(z) AV (z)
Figure 38: Analysis of which
tablel every leg of ] which ] broke
n sfinp/n n/np g(n\n/(sT(sfinp)), sfinp, np) sT(sfinp)
table every leg AAXNVAP A P(e) AV(A(z)) 5, Azr.zr(break)
ge
npry Je
wleg(y) B
sfinp: every (leg(y)) ”
n\n/(sT(sftnp)): AVAP Az . P(z) A V(every(leg(z))) /
e
n\n: AP.Az.P(z) A every(leg(z))(break) \
e

n: Az.table(z) A every(leg(z))(break)

Figure 39: Analysis of table every leg of which broke

itself pied-piped. Such a case was not explicitly treated by Morrill, but follows
directly from our theory of quantification by simply instantiating his polymor-
phic lexical entry. An example of quantifier pied-piping is provided in Figure 39.
The key to this analysis is the derivation of broke as category s1(sfinp), which
follows the derivation in Figure 25. Otherwise, the derivation is similar to our
previous derivation in Figure 37.

In examples such as the following, we derive a scope ambiguity between the
quantifier being pied-piped and quantifiers within the sentence with a quantifier

gap.
(41)  the author every paper by whom some journal accepted

Here we get an ambiguity between whether or not it is the same journal ac-
cepting each of the author’s papers. This affect 1s achieved due to the correct
interaction of the gap introduction rules and the quantifier rule, as shown in
the two analyses of some journal accepted in Figure 40. Note that these deriva-
tions simply parallel those in Figure 28. Depending on which of these analyses
is used, different scopings of the pied-piped quantifier will be generated.

In addition to generating the correct readings for pied-piped quantifiers, our
theory does not generate ill-formed analyses in which variables are unbound.
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table the leg of which broke
l l d l d

n: table np/n:t n/np:leg g(n\n/(sTnp), np, np) sTnp
AAAVAPA.P(zx) A V(A(z)) , break
qe

np:y Je

wleg(y) B

np: i(leg(y)) .
n\n/(sTnp): \V.APAz. P(x) AV (i(leg(x))) Je
n\n: AP.Azx.P(z) A break(s(leg(z))) \e

n: Az.table(z) A break(«(leg(z)))

Figure 37: Analysis of table the leg of which broke

Morrill [1992b] has recently answered Pollard’s [1988] challenge to provide
an analysis of pied-piping in categorial grammar. His analysis exploits the ¢
constructor, assigning the following category to relative pronouns.

(40)  which = q(n\n/(s14), A, np): ANAV.AP Az . P(x) A V(N (x))
[A € {np, sftnp, n\n, s\np\(s\np)}]

This is a polymorphic lexical entry, in that 1t is parameterized for values of the
category A. The values for A indicate the categories which may be pied piped
in English. Of course, we have to be careful to choose the appropriately typed
variables for each instance of A. For our purposes, we may treat the above
lexical entry as schematic rather than truly polymorphic. With A instantiated
to np, we have pied-piping of a noun phrase. An analysis of a noun modified by
a pied-piped relative clause is given in Figure 37. To focus on the important part
of the analysis, we have suppressed the analysis of leg of ; which involves slash
introduction and type raising. Furthermore, we have abbreviated the analysis
of broke as an s|np, which is carried out by T introduction. This allows us
to focus on the behavior of the relative pronoun which. Here it is treated as
a noun phrase in the analysis of the leg of which, which is seeking a sentence
with a noun phrase gap. The meaning of the leg of which semantically fills the
gap in the sentence, with the variable introduced for which becoming identified
with the nominal variable in the final analysis. Pied-piping of other categories,
such as prepositional phrases, follows exactly the same pattern; the pied-piped
element fills a gap in a sentence, with the relative pronoun’s variable being
identified with that of the noun being restricted by the relative pronoun.
Morrill notes with his analysis that the pied-piped category for relatives
is more general than the standard one. In fact, we can derive our previous
relative pronoun category as shown in Figure 38. This is just the boundary
case of pied-piping, in which the only element pied-piped is the relative itself.
The interesting case for present purposes is that in which a quantifier is
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q Left

I, Cix, T = B: g .
q

4

I'y,q(A, B, C)a, Ty = A:a(rs.fB)
[z fresh]

¢ Right

qr

4

Ao = q(A, B, B): AP.P(a)

Figure 35: Sequent Schemes for ¢

¢ Elimination

qg(A, B,C)a
7 ge
C:z

B: g
A:a(Az.f)

¢ Introduction
A«
q(A, B, B): AP.P(a)

i

Figure 36: Natural Deduction Schemes for ¢

connective, these schemes are not complete for their intended interpretation,
but this is not important in the current context.?’ With these rules we have
the following logical equivalence.

(39) ANB:a=g¢(A B, B):«a

Thus we can treat the binary scoping constructor {} as an instance of the more
general ternary scoping constructor q.

2OMorrill and Solias [1992] are able to define ¢ in terms of their constructors | and |,
by setting ¢(A4,B,C) = A[(B1C), a move suggested by Moortgat [1988], though it was
unsound in his logic. Unfortunately, as we mentioned earlier, Morrill and Solias’s approach
is incomplete with respect to the intended interpretation of the quantification constructor
[Morrill 1992a].



34 BOB CARPENTER

Smithl hired ; a pupil of [np:z]° p

np:s s\np/np: hire sﬂnp:some(pupil(x))ﬂ s
e

np:y /e

s\np: hire(y)

\e
s: hire(y)(s) fe?
s:some(pupil(z))(Ay.hire(y)(s)) fe?
s:some(pupil(z))(Ay.hire(y)(s)) 1

i

sTnp: Az.some(pupil(z))(Ay.hire(y)(s))

Figure 34: Analysis of Smith hired a pupil of

Our theory correctly characterizes the fundamental interaction between ex-
traction and quantification, seen in examples such as (6)a. We provide another
such example below.

(37)  Every professor that [Smith hired [a pupil of __]] retired.

This example illustrates that quantifier internal gaps bound by relative pro-
nouns can not take wide scope with respect to the quantifier binding the nomi-
nal in which they occur. Such an occurrence would lead to an unbound variable.
The reason such an analysis is blocked in our system is again due to the logi-
cal structure of our derivations, which requires their proper nesting. The only
(normal) derivation of the relative complement is shown in Figure 34. An at-
tempt to give the nested quantifier any wider scope would not allow the relative
complement to be derived, and would thus prohibit any derivation other than
the correct one.

7.1. Generalized Quantification and Pied-Piping

Moortgat assigned the category A{lB to expressions which could act as Bs in
the analysis of an A, at which point they could apply semantically to produce
an A. Noticing the two occurrences of A in this definition, he introduced a more
general ternary constructor ¢. Expressions assigned to category ¢(A, B, C) are
able to act as C's in the context of a derivation of B, at which point they reduce
semantically to produce an A. Thus we have the following clause for ¢ and its
corresponding typing.

(38) a. q(A,B,C)e Catif A, B,C € Cat
b. Typ(Q(A, B,C)) = (Typ(C)— Typ(B))— Typ(A)

The sequent and natural deduction rules for ¢ are the obvious ones, which we
present in Figure 35 and Figure 36. As with the rules for the binary scoping
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student ] who ] Fred believed dropped out yesterdayd
n:student n\n/(sTnp) sTnp

APARAz.P(z) A R(z) Ay.bel(yes(dropout(y)))(f) /

e

n\n: AR.Az.bel(yes(dropout(z)))(f) A R(z)

\e
n: Az.bel(yes(dropout(z)))(f) A student(z)

Figure 32: Analysis of student who Fred believed dropped out yesterday

every kid p likes ; [np: z]°
stnp: every (kid) , s\np/np:like
fre /e
np:y s\np: like(z)

\e
s:like(z)(y) 12

s: every (kid)(like(z)) 1

i

sTnp: Az.every(kid)(like(zx))

Figure 33: Analysis of every kid likes

pronouns, which is the natural generalization of Steedman’s [1985] semantics
for the relative pronouns.

(36)  who = n\n/(snp): A\P.AR.Az.P(x) A R(x)

In conjunction with the analysis of the relative complement in Figure 31, we
are able to produce the derivation in Figure 32.

As with our previous analyses, now that we have characterized the logic
for gaps, we derive a number of results which have previously been stipulated.
Two such predictions are forthcoming in the case of relative clauses with em-
bedded quantifiers. First, consider the example in (2)c. Here we can reduce the
quantifier internally to the relative clause by applying slash introduction and
then applying quantifier elimination, as shown in Figure 33. When the phrase
derived here occurs as a complement to a relative clause, the result is narrow
scope for the quantifier.

It has been observed that relative clauses are so-called ¢slands for embedded
quantifiers [Ross 1967; Postal 1974; Rodman 1976; Fodor and Sag 1982]. In
other words, quantifiers can usually not take scope wider than the relative
clause in which they appear. But the data is very subtle, and beyond the
scope of the current paper. We do note, though, that Morrill [1990a, 1992b]
has introduced a logical analysis of islands in terms of structural modalities.
Morrill’s goal was to account for islandhood with respect to extraction, but the
same categories he used to block extraction could be used to block quantifiers
from escaping.
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Gap Introduction

[A:z]”

B:a .
Tln
BTA: Az.«

Figure 30: Gap Natural Deduction Scheme

Fredl believed ; [np: y]° dropped out ; yesterday ;
np:f s\np/s: bel s\np: dropout s\np\(s\np)
)\V.)\yc.yes(V(yc))\e
s\np: Az.yes(dropout(z)) \e
s: yes(dropout(y)) Je
s\np: bel(yes(dropout(y))) \e
s: bel(yes(dropout(y)))(f) 1

sTnp: Ay.bel(yes(dropout(y)))(f)

Figure 31: Analysis of Fred believed dropped out yesterday

i1s in order to account for phrase-internal gaps, such as those occurring in the
following.

(35) a. The student who [the professor met __ yesterday on the quad] filed a
complaint.

b. The student who [Fred believed __ had dropped out] is back.

In both of these cases, the noun phrase gap, indicated as usual by an underscore,
is internal to the phrase from which it is missing, indicated by bracketing.
Both of these bracketed phrases will be analyzable as being of category s{np.'?
Such an analysis is shown in Figure 31, where for simplicity, we have employed
a reduced entry for the adverbial yesterday. The modificational behavior of
relative clauses arises from the assumption of the following category for relative

19 This fact highlights one of the primary differences between logical approaches to grammar
and those developed in the transformational tradition [Gazdar 1981a]. Transformational
accounts typically treat the bracketed phrases in (35) as being rooted at category s, with
the occurrence of an empty category as a leaf in the tree indicating that there is a gap.
Ed Stabler [personal communication] has pointed out that these traditions could be brought
closer together by thinking of the root s of the transformational derivation as being marked
in addition with the categories remaining to be governed.



QUANTIFICATION AND SCOPING 31

Gap Right

Ty, Biz, o= Ao
Tr

T, Te = ATB: Az«
[z fresh]

Figure 29: Gap Sequent Scheme

7. UNBOUNDED DEPENDENCIES AND QUANTIFICATION

In this section, we turn our attention to a logical account of unbounded de-
pendencies. After introducing the sequent and natural deduction versions of
Moortgat’s [1988] calculus, we will see how unbounded dependencies interact
in the correct way with quantifiers. We further show how this conception of
unbounded dependencies provides a logical analogue of the slash-passing mech-
anisms of Gpsa [Gazdar 1981b].

Like quantifiers, unbounded dependencies are characterized by a binary con-
structor, which was originally introduced by Moortgat [1988]. Its form and type
are as follows.

(34) a. A|B e Catif A, B¢ Cat
b. Typ(A1B) = Typ(B)— TypA

The 1 operator is interpreted in the same way as the slash constructor in GPSG.
Specifically, an expression of category A|B can be thought of as an incomplete
A which is missing a B. In this section, we will focus on the category sTnp,
which is assigned to sentences with an np gap.'”

Moortgat formulated only a right rule for the gap constructor, which we
present in Figure 29.'% Like the right rules for slashes, we require the variable
x to be fresh and of the appropriate type. The natural deduction equivalent of
the sequent scheme is given in Figure 30.

The gap sequent scheme is similar in nature to the right rules for the slashes;
in fact, its semantics i1s 1dentical. The only real difference is that the hypothet-
ical category is not required to occur peripherally in the gap schemes. This

17Steedman’s [1985] previous treatment of unbounded dependencies in categorial grammar
attempted to do without a special gap constructor. Instead, he analyzed sentences with noun
phrase gaps as either being of category s/np or s\np. In HPSG [Pollard and Sag in press],
the most fine-grained of the theories related to ours, gaps come in three flavors, depending
on whether they will be used for wh-relatives, wh-questions or pure movement.

18Solias [1992, Morrill and Solias 1992], by keeping track of the point of insertion, derived a
dual left rule for the use of a gapping constructor. In particular, she assigned the expression
(e1,e2) to the category A1B if and only if for every expression e3 of category B, e1 - e2 - €3
is assigned to category A. With this control over the point of insertion, the rule of use
is the obvious one in which an expression of category ATB wraps around an expression of
category B at the point of insertion, to form a result of category A. She also introduced a
dual constructor |, such that expressions of category A|B could be inserted into categories
of expression B, at a specified point of insertion, to produce a result of category A.
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[sﬂnp:Q]Oﬂe4 like everyone

np:x s\np/np: like sfinp: evelt'y1TT65
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s\np: like(y) \e

s:Like(y)(2) o
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s: Q(Az.every, (Ay.like(y)(z))) \i0
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s\(sfinp): AQ.every, (Ay.Q(like(y)))

Figure 28: Analyses of like everyone

Note that these readings are derived without making the standard transfor-
mational assumption that the object and infinitive phrase form a constituent
sentence under some kind of exceptional case marking. This greatly simplifies
the treatment of the passive as applied to control verbs in general [Bresnan
1982, Pollard and Sag 1987, Carpenter 1992a].1¢

With the reduced lexical entries for “equi” verbs, the following examples
display less ambiguity.

(33) a. John persuaded someone to help everyone.

b. Someone promised John to help everyone.

There are only three readings in each case: one in which the universal is inside
the scope of the control verb, derived as above, and two in which both quan-
tifiers are wide, with alternative scopes, derived in the usual way by quantifier
elimination.

16 A more general, polymorphic lexical entry for “raising” verbs would, in a uniform manner,
allow the full range of controllers noted by Bresnan [1982], such as pleonastic it and there,
inverted prepositional phrases, and so on. See [Emms 1990] and [Morrill 1992a] for suggestions
concerning polymorphism.
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everyone probably [sfinp: Q2]° didn’t study

l l fe® d
sfinp s\(sfrnp)/(s\(sftnp)) np: v i s\(sfrnp)
every, AV.AQ: .prob(V(Q1)) np: AP.P(z) AQs.—Qs(study)
\e
s: —study(z) fe?
s: @2(Az.mstudy(z)) \i?
i

s\(sftmp): AQ2.Q2(Az.~study(z))
s\(sfinp): AQ1.prob(Q1(Az.—study(z)))

s: prob(every, (Az.—-study(z)))

/e
\e

Figure 27: Analysis of everyone probably didn’t study

For (3)f, where there is a quantifier in the object position of the controlled
verb phrase, the slash introduction rule combined with the quantifier elimina-
tion rule allows us to derive the narrow scope reading of the embedded quan-
tifier. Such an analysis for the case of (3)f is provided in the first derivation
in Figure 28. For concreteness, we can follow Gpsa [Gazdar et al. 1982] in
treating the infinitive marker to as an auxiliary with the identity function as
its semantics, just as in our treatment of did in (26)c. The remainder of the
analysis of (3)f proceeds by slash elimination, after type raising the subject, to
derive the following result.

(28) John seems to like everyone = s:seem(every, (Az.like(z)(3)))

Of course, by simply using quantifier elimination on the embedded quantifier,
we can derive the wide scope reading given below.

(29) John seems to like everyone = s: every, (Az.seem(like(z)(j)))

There is also the possibility of reducing the quantifiers in Figure 28 in the
opposite order, as given in the second derivation. This generates the following
analysis.

(30)  like everyone = AQ.every, (Az.Q(Ay.like(y)(x)))

This allows us to derive a six way ambiguity in the following example of a
subject control “raising” verb with a quantified subject and a quantified object
in the controlled infinitival complement.

(31)  Someone is guaranteed to like everyone.

Here there are two possibilities in which the quantifiers are internal to the
guarantee, two in which they are external, and two in which one is internal and
one is external. There are six analogous readings for object “raising” verbs, as
n:

(32)  John believes someone to like everyone.
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everyone didn’t ] study

l

sfinp: every, s\(sfmp)/(s\(sfinp)): AWV.AQ1 .=V (Q1) s\(sfinp): AQ2.Q2(study)

/e
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\e
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l

sfinp: everylﬂeo s\(sftnp)/(s\(sftnp)): AVAQ1 .=V (Q1) s\(sfinp): AQ2.Q2(study)
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np:

T
np: AP.P(x)

/e

\e

s: —study(z)

fre’

s:every, (Az.—study(z))

Figure 26: Analysis of everyone didn’t study

The wide scope reading of the quantifier is achieved by a combination of the
quantifier elimination and introduction schemes.

An analysis such as that in Figure 26 has traditionally not been a problem
for storage-based accounts or quantifying-in accounts.!® On the other hand, the
case where control examples nest, such as (3)b have been. While the wide scope
and narrow scope readings are generated just as in Figure 26, the intermediate
readings have proven to be problematic. Here is another case for which our
categorial logic pays off. The interaction between the slash schemes and the
quantifier schemes captures the intermediate reading, as shown in Figure 27.

Cases of raising and equi-type control verbs can be handled in exactly the
same fashion. The lexical entries required for the remaining examples in (3),

(3)c through (3)f, are as follows.

(27) a. seems = s\(sTnp)/(s\(sTtnp)): AV.AQ .seem(Q(V))
b. believes = s\np/(s\(sftnp))/(stnp): AQ AV.Az.bel(V(Q))(x)
¢. persuaded = s\np/(s\np)/np: Ay.AV.Az.persuade(V(y))(y)(x)

With these lexical entries, the analyses of (3)c through (3)e are derived by
simple slash elimination. The distinction between so-called “equi” and “raising”
control verbs is determined lexically; the “equi” verbs, such as persuade, are
controlled by simple noun phrases rather than by quantifiers. This forces wide
scope, as there 1s no way to raise a noun phrase argument to a quantifier with
Narrow scope.

15Except for those accounts such as found in HPSG [Pollard and Sag in press], where
quantifiers always begin in storage.
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[sfinp: Q]Oﬂe2 runs
np: v s\np: run
\e
s:run(z) e
s: Q(run) \i0

s\(sfinp): AQ.Q(run)

Figure 25: Type Raised Analysis of runs

6. CONTROL AND QUANTIFICATION

In this section, we provide the lexical entries necessary to capture the correct
pattern of behavior displayed by control constructions. In categorial grammars,
control 1s effected syntactically by categorizing control verbs as taking verb
phrase complements [Steedman 1988]. Semantically, control is achieved by g-
reduction of shared variables. In this way, many disparate categories, such as
adverbials, negative particles, auxiliary verbs and the usual control verbs, are
treated identically from a syntactic vantage point.'3

Consider the following lexical entries:

(26) a. not = s\(sfnp)/(s\(sfhtnp)): AV.AQ.-V(Q)
b. probably = s\(sftnp)/(s\(sftnp)): AV.AQ.prob(V(Q))
¢. did = s\(sftnp)/(s\(sfinp)): A\WV.AQ.V(Q)
d. didn’t = s\(sftnp)/(s\(sftnp)): AV.AQ.-V(Q)

All of these categories take verb phrases seeking quantified subjects as argu-
ments and result in the same kind of category. The only difference is in semantic
effect.!* Note that the category assigned to didn’t is derivable by slash intro-
duction as an analysis of did not.

From our minimal category assignment for verb phrases; s\np, we show in
Figure 25 how to derive the category s\(sftnp) by slash introduction and quan-
tifier elimination. In Figure 26, we show the two analyses for an ambiguous
sentence such as (3)a, in which the subject is quantified and the verb is negated.
The narrow scope reading of the quantifier with respect to the negation, corre-
sponding to the first analysis in Figure 26, is derived naturally by application.

13This is more or less true in LFG [Bresnan 1982] and HPSG [Pollard and Sag 1987, in
press, Sag and Pollard 1991] approaches to control, though both of these theories allow finer
grained syntactic distinctions to be made than we allow for here. The use of unification in
these theories achieves an effect similar to that of S-reduction in the categorial approach.

14 For the sake of simplicity, we ignore the issue of tense and of syntactic marking, both of
which can be incorporated straightforwardly. For tense, the approach of Hinrichs [1988] is
especially compatible with our approach. In terms of the syntactic marking of auxiliaries, we
adopt the GPSG approach of Gazdar, Pullum and Sag [1982], which has been worked out in
detail for the categorial setting by Carpenter [1992a).
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Figure 24: Scoping Restriction Violation

conclusion. The proper interpretation of the natural deduction schemes is iden-
tical. In particular, in Figure 24, A: 3 is not properly derived as there is still
an undischarged hypothetical assumption. Hence the attempt to introduce the
quantifier «r; and eliminate the hypothesis of B:x; is blocked.

To correct this problem suffered by Cooper’s approach, a number of moves
have been taken. In HPsG [Pollard and Sag in press], for example, a principle
of quantifier binding is enforced that effectively blocks derivations in which all
variables are not bound. This i1s similar to the effects achieved by a similar
restriction in the system of Hobbs and Shieber [1987], which shares proper-
ties of both storage and quantifying-in. A logically more natural approach in
which the store is structured as a nested list was independently introduced by
Keller [1988] and Gerdemann and Hinrichs [1990]. In retrospect, it can be seen
that their nesting mechanisms are nothing more than a “semantic” encoding of
the structural condition on derivations imposed by our quantificational logic.
Furthermore, our approach explains why storage mechanisms, which seem so
closely related to Montague’s quantifying-in rule, originally derived different
results — the full logical structure of Montague’s approach was not encoded in
the phrase-structure derivations of Cooper.
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student ] in ] every class g
n:student n\n/(sfinp) sfinp: every(class)
AQAP Az . P(z) A Q(Ay.in(y)(z)) /
e
n\n: AP.Az.P(z) A every(class)(Ay.in(y)(z)) \
e

n: Az.student(z) A every(class)(Ay.in(y)(z))

Figure 23: Analysis of student in every class

quantifiers in order to act as complements of prepositions. This is analgous to
the treatment of simple noun phrases as complements to intensional verbs. For
instance, by type raising np: chi to sfinp: AP.P(chi), we are able to derive:

(23)  in Chicago = n\n: AP.Az.P(x) A in(chi)(z)

We also adopt a type-raised account of modifying prepositions, with the
following kind of lexical assignments:

(24)  in= n\n/(sftnp): AQ.AP.Xz.P(x) A Q(Ay.in(y)(x))

An example of a derivation of a nominal with a quantifier embedded in a prepo-
sition is provided in Figure 23. This derivation contributes the nominal for the
narrow scope reading of (2)a. The wide scope reading is derived as usual, by
allowing the embedded quantifier to take sentential scope, using a combination
of elimination and introduction, following the same pattern as the relational
noun analysis in Figure 22.

As before, our analysis is strikingly similar in its sequent form to Montague’s,
and in its natural deduction form to Cooper’s. Our quantifier elimination is
analogous to term insertion and our quantifier introduction to type raising.
Like Montague, we enjoy the property of not being able to derive unbound
variables in our representations. Using Cooper’s quantifier storage mechanism
[1982, 1983], there was no way to block the derivation of the following erroneous
result:

(25)  a student in every class failed =
s:some(Az.student(z) A in(y)(x))(Ax.every(class)(Ay.fail(z)))

The fault in Cooper’s derivation lies in the unbound occurrence of the variable
y in the restriction of the existential determiner. The fault in his system is
the lack of a nesting restriction on quantifier retrieval. Under our approach,
we can not perform such derivations, which take the general form shown in
Figure 24. Such non-derivations are blocked because of the way in which we
interpret our quantifier elimination schemes as natural deduction equivalents
of the left sequent scheme for quantifiers. It is clear from the sequent presen-
tation in Figure 9 that it is impossible to derive results in which variables are
unbound. Every variable introduced in the antecedent sequent is bound in the
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picture ] of ] everyone

n/(sfnp) stnp/(sfinp): AQ2.Q- sfinp: every,
. /e
AQ1 Az.Q1(Ay.pic(y)(z))

s{inp: every,

/e

n: Az.every, (Ay.pic(y)(z))

Figure 21: Analysis of picture of everyone

a ] picture of everyone faded
e

sfinp/n: some n:)\x.everyl()\y.pic(y)(x))/
e

fre”

s\np: fade

sfinp: some(Az.every, (Ay.pic(y)(z)))

np: 3

s:fade(zs)

\e
fre’

s:some(Az.every, (Ay.pic(y)(z)))(fade)

2 picture ] of everyone g faded

sfinp/n n/(sfinp) sfinp:every, , s\np:fade
. e
some AQAz.Q(Ay.pic(y)(z))

np:u

e
Je
Je
fre?

np: AP.P(u)

n: pic(u)

sfinp: some(pic(u))

np: z

s:fade(z) e
e

fre”

s:some(pic(u))(fade)

s: every, (Au.some(pic(u))(fade))

Figure 22: Analysis of a picture of everyone faded

to one analysis of an example like (2)b, as shown in the first part of Figure 22.
But embedded quantifiers are also allowed to take wide scope. As usual in a
Montagovian approach, this is achieved by using the quantifying-in rule coupled
with type raising, as in the second analysis in Figure 22. Note that we have
normalized A-terms; for instance, we use fade, which is the n-reduced form of
Az fade(z), and pic(u), which is the n-reduced form of Az.pic(u)(z), which
itself is the doubly g-reduced form of (AQ.Az.Q(Ay.pic(y)(2)))(AP.P(u)).

It is useful to note at this point that noun phrases can simply be raised to
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[np: z]° seek ;o Lt Q) o
s\np/(sfinp): seek Y

np: )\P.P(y)/e

s\np:seek(AP.P(y)) y
s:seek(AP.P(y))(z) e
s:Q(Ay.seek(AP.P(y))(x)) \io

s\np: Az.Q(Ay.seek(AP.P(y))(z)) o

s\np/(sfinp): AQ.Az.Q(Ay.seek(AP.P(y))(x))

Figure 19: De Re Analysis of seek

: . > . .

Ao . . Ao
I, | S Lo
BRA:AP.P(a), , - . .
o fre™

A:

’ B: B[z — a]
B: g

fre™

B:(AP.P(a))(Az.53)

Figure 20: Scoping Normalization

5. QUANTIFICATION IN NOMINALS

In this section, we consider the role of quantifiers occurring within complex
nominals. The two simple cases, represented by (2)a and (2)b, involve preposi-
tional phrases, both as modifiers and complements to nouns. We first consider
the relational noun case. Nouns such as picture receive lexical entries which are
subcategorized for quantified, prepositionally-marked complements. Following
GPSG [Gazdar et al. 1985], we assume that prepositions such as of syntactically
function as case markers, and semantically as identity functions.

(22) a. picture = n/(sfinp): AQ.Az.Q(Ay.pic(y)(z))
b. of = sftnp/(sfinp): AQ.Q

We will not be concerned with the distribution of syntactic features here (but
see Morrill [1992a]). In the simplest case, these lexical entries allow quantifiers
to take scope within the nominal, as in Figure 21. This derivation contributes
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Johnl runs
np:j i s\np: run
npAPPG)
np: \e
s:run(z) 160
s:run(j)

Figure 17: “Spurious” Analysis of John runs

[np: z]* hits o [step QP
s\np/np: hit np:y Je

s\np: hit(y) \e

s:hit(y)(z) fe?

s: Q(Ay-hit(y)(x)) \it

s\np: Az.Q(Ay.hit(y)(z)) /0

s\np/(stnp): AQ.Az.Q(Ay.hit(y)(z))

Figure 18: Derivation of Montague’s Lexical Entry for hits

non-normal proof in Figure 17. Here we have raised the noun phrase subject to a
quantifier and then reduced it. A similar example allows us to derive Montague’s
categories for transitive verbs, which always involve quantificational objects,
from our simpler lexical assignment, as shown in Figure 18. Thus we avoid
the lexical assignment of higher-order types where they are not necessary, but
still enjoy the ability to derive the corresponding raised types when necessary.
For instance, consider the coordination of an intensional and non-intensional
transitive verb.

(21)  The professor was seeking and later found a reference to type raising.

In our theory, such examples are predicted to be ambiguous; the seeking could
be de dicto or de re, but of course the finding must be de re. This is because
seek can be analyzed as in Figure 19.

We also avoid the introduction of meaning postulates for non-intensional
verbs. Rather, we derive the same results from the normalization scheme for
quantifier introduction and elimination. This scheme is given in Figure 20. The
only thing to note is that the resulting semantic assignments are equivalent by
two applications of S-reduction.
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Bradl [s\np: V]? likes ] [np: 2]°
np:b \e s\np/np: like Je
s:V(b) /,2 s\np: like(z)
i
s/(s\np): AV.V (b) /
e
s:like(z)(b) /0
s/np: Az.like(z)(b)
Figure 15: Analysis of Brad likes
B-Normalization
[A:z]” A8 > © AR
B:a . B:a[z — ]
- /"
B/A: Az.a
/e
B: (Az.a)(f)

n-Normalization

A/B:«a [B:x]”/e > A/B:«

Jin

B:o(x)

A/B: Ax.ox)

Figure 16: Slash Normalization

ization schemes illustrate the structural correspondence in the Curry-Howard
morphism; the normalization of proofs corresponds to the normalization of A-
terms. Of course, there are analogous normalization schemes for the backward
slash. By applying normalization rules recursively to subproofs, the end result
i1s what 1s known as a normal proof. In general, such a proof involves as little
use of introduction rules as is possible to derive the sequent in question. Such
normal forms of categorial grammar proofs have been exploited in computa-
tional applications of Lambek’s categorial grammars and their extensions by
Hepple and Morrill [1989, Hepple 1990b, 1992] and Konig [1989], and to deal
with similar problems of spurious ambiguity in parsing Steedman’s combinatory
categorial grammars by Hepple [1987] and Wall and Wittenburg [1989].

Just as we can normalize proofs involving slashes, we can normalize those
involving combinations of type raising and scoping. For instance, consider the
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John] sought a job

l /e

np:J s\np/(sfinp): seek sfinp: some(job)/
e

s\np: seek(some(job)) \

e

s: seek(some(job))(j)

John] sought ] a job g
np:J s\np/(sfinp): seek sfinp: some(job)ﬂ 0
" fre

np:x i

sfinp: AP.P(x)

/e

s\np:seek(AP.P(zx)) \

e
s:seek(AP.P(z))(j) 160

s:some(job)(Az.seek(AP.P(z))(j))

Figure 13: Analysis of John sought a job
bradl likes ; [np: 2]° Pittsburghl
np:b s\np/np: like / np: pgh

e
s\np: like(z)
\e
s:like(z)(b) /0
s/np: Az like(z)(b) /
e

s:like(pgh)(b)

Figure 14: Analysis of brad likes Pittsburgh

many other ways to derive the same sentence. A second way in which the sub-
ject could first combine with the object is by raising the subject to the category
assigned subjects by Steedman [1988], as shown in Figure 15. But there is a
well-defined sense in which these derivations are less primitive than the simple
ones using only application. We can define the notion of proof normalization, as
it is used in other natural deduction calculi [Girard, Lafont and Taylor 1987].
Normalization rules reduce derivations of a sequent to simpler derivations of
the same sequent. The normalization schemes for the forward slash are given
in Figure 16. The normalization schemes eliminate an instance of slash intro-
duction that is coupled with a corresponding slash elimination. It follows from
the soundness of the g-conversion and n-conversion schemes in the A-calculus
that a normalized derivation produces the same semantic result. The normal-
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a ] student ] read ] every ] book

sfinp/n: some n: student/ s\np/np: read sfinp/n: every n: book
e

l

€

sfinp: some(student) o sfinp: every(book) 1e?
e e

np: np:y Je

s\np: read(y)

\e
s:read(y)(z) fe?
s: every (book)(Ay.read(y)(z)) 160

e

s:some(student)(Az.every(book)(Ay.read(y)(z)))

a student g read ] every book g
sﬂnp:some(student)ﬂ 5 s\np/np:read sﬂnp:every(book)ﬂ o
e e

np: T np:y Je

s\np: read(y)

\e
s:read(y)(z) e
s:some(student)(read(y)) 160

e

s: every (book)(Ay.some(student)(read(y)))

Figure 12: Analysis of a student read every book

version of (1)c are given in Figure 13. The first analysis corresponds to the
de dicto case, in which John stands in the seeking relation to the generalized
quantifier some job. The second analysis is for the de re case, in which there is a
particular job x for which John stands in the seeking relation to the generalized
quantifier AP.P(x) representing the properties of the job .

4. “SPURIOUS” AMBIGUITY AND NORMAL PROOFS

Our logic, in both natural deduction and sequent form, admits infinitely many
different proofs of every provable sequent. For instance, abstractions can be
carried out and then re-applied, or arbitrary categories can be type raised and
then quantified-in. Such multiple derivations has often been referred to as spu-
rious ambiguity, because the ambiguities in derivations do not correspond to
ambiguities in assigned meanings. For instance, consider the redundant deriva-
tion of a sentence with a simple transitive verb in Figure 14. Here we have first
combined the subject with the verb phrase, which requires the postulation of
a hypothetical object. This illustrates the way in which such “spurious” am-
biguities might be considered useful for left to right parsing; the hypothesized
categories correspond to top-down predictions of material to follow. There are
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Scope Elimination

ANB: aﬂei

B:z

A: 3
A:a(Az.f)

fre'

Scope Introduction
B: g

P
AN B: dz.x(f)

Figure 11: Natural Deduction Scoping Schemes

noting generalized determiners, every and some, to the determiners of cat-
egory sfnp/n. In this derivation and in following ones, we have normalized
the A-terms. For instance, we have used the n-reduced read(y) instead of the
non-normal Az.read(y)(«z). Finally, we will shorten our derivations as much as
possible by the use of derived rule schemes, which we mark with d. For instance,
in the second derivation in Figure 12, we do not repeat the derivations of the
generalized quantifiers.

The natural deduction form of the quantifier elimination schemes highlights
the striking similarity between our logical approach and the phrase structure
approach embodied in Cooper’s [1982, 1983] storage mechanism The point at
which a quantifier 1s eliminated and a hypothetical assumption is made is anal-
ogous to the point at which a quantifier is placed in storage. The point at which
the assumption is discharged is analgous to the point at which the quantifier
is removed from storage and applied semantically. So far, the only distinc-
tion seems to be that the intermediate nodes in our derivation do not carry
information concerning the quantifiers in storage. Instead, this relationship is
mediated by the quantifier elimination scheme. In retrospect, the way in which
our sequent presentation corresponds to Montague’s quantifying-in rule, and
the way in which our natural deduction presentation of the same logical system
correspond to Cooper storage, illustrate the deep logical connection between
Cooper storage and quantifying-in — Cooper storage 1s an attempt at provid-
ing a natural deduction version of Montague’s logic. We see below the ways in
which this attempt ultimately failed, by not capturing the logical structure of
Montague’s quantifying-in scheme.

We can also adapt Montague’s analysis of verbs such as seek, by treating
them as taking generalized quantifiers as objects. Two analyses of a simplified
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\l

np:x, s\np:run = s:run(z)

i

sfinp: every,, s\np:run = s:every, (Az.run(z))
Figure 10: Example of Scoping

lexically assigned sfinp:every;. Here we take the semantic constant every;
to be the standard universal generalized quantifier of type (Ind—Prop)—Prop.
The intended interpretation of every; is as a function which maps a property
to a true proposition if and only if the property is itself true of every individual.

The form of the left rule for quantifiers 1s very similar, both in spirit and
in application, to Montague’s quantifying-in rule. Like Montague’s rule, we are
able to combine an analysis involving a noun phrase with a variable semantics,
and a quantifier, to produce a derivation where the quantifier binds the variable.
The only real difference is that the notation of Montague, including construction
specific schemes, as well as cumbersome and ill-motivated expressions such as
he,, 18 replaced with a logical scheme. Montague avoided the equivalent of
sequent rules with antecedents, using instead a purely axiomatic system.

The right quantifier rule appears to be nothing more than Montague’s lexical
approach to type raising. But the logical presentation shows how the two rules
are related to one another as duals. The right scoping rule allows us to perform
type raising of the usual kind, as in the following derivable sequent.

(20)  np:j= shnp: AP.P(j)

This allows us to lexically assign proper names to the syntactic category np,
and derive the generalized quantifier category. This avoids the tendency of
Montague to generalize to the worst case for each construction and lexical entry,
a strategy requiring further meaning postulates to avoid unwanted ambiguity.
In general, we will assign the lowest adequate type to an expression and simply
derive the raised types when necessary.

Before presenting further derivations, we present the natural deduction ver-
sion of the scoping schemes in Figure 11. The introduction scheme is straightfor-
ward, as it 1s just the phrase structure analogue of type raising. The elimination
scheme involves hypothetical reasoning; if AtB: « can be derived, then we can
treat it as being of category B:x in the derivation of A:«, at which point it
takes semantic scope. The coordinated points in the derivation are indexed by
the same integer. Note that the natural deduction scheme is simply a reformu-
lation of the left sequent scheme, with an implicit use of the cut rule. Also note
that there 1s no assumption that the quantifier appear on the periphery of the
derivation, as with the forward and backward slash introduction schemes.

The two derivations of (1)a are shown in Figure 12. These derivations
show that the order in which quantifiers are discharged determines their rel-
ative scopes. While we are not concerned with the logical interpretations of
quantifiers, we note that in these derivations we have assigned constants de-
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Scope Left
Iy, Biz, o = A: 3

r
Iy, AfB:a, I'; = A:a(Az.f)

[z fresh]

Scope Right
M

B: 3 = A(B: Az.x(f)
Figure 9: Sequent Presentation of Scoping Schemes

investigated by Partee and Rooth [1983, Partee 1987]. But Hendriks’ account is
problematic in that it both overgenerates and undergenerates, as well as unduly
complicating with nonlogical, recursive, asymmetric rule schemes, an otherwise
elegant logical formalism.

In this section, we introduce Moortgat’s scoping constructor, along with its
introduction and elimination rules. The basic operation is similar to that of
the term insertion rule employed by Montague. Moortgat’s binary constructor
1t allows us to freely construct categories according to the following scheme:

(18) AfrB e Catif A, B € Cat
We assign a semantic type to a category of the form AfB by:
(19)  Typ(ANB) = (Typ(B)—Typ(A))— Typ(A)

Our intended interpretation of quantifiers is such that an expression is assigned
to the category AftB if and only if it can act as a B in the derivation of an
A, at which point it can be applied semantically. Thus we assign the category
sfinp to generalized quantifiers; they act as noun phrases, and take semantic
scope within embedding sentences.

As with other constructors, the rule schemes for the scoping constructor
form a dual pair, with one left rule and one right rule. We present these rules
in Figure 9. The left scoping rule is hypothetical in nature and corresponds to
the use of a quantifier. The right rule corresponds to type raising.'?

An example of the application of the left scoping rule can be found in Fig-
ure 10. This derivation is of the sentence everyone ran, where everyone is

12Unlike the slash rules, the pair of scoping rules are sound, but not complete with respect
to their intended interpretation. For the slash rules, we can derive e = A/B if and only
if for every expression ¢’ of category B, e - ¢’ is of category A. In the case of scoping, we
would like to be able to derive e = AtB if and only if e can occur as a B in the context
of an A. Not every expression that can so occur will be analyzed as having category AN B.
Morrill and Solias [1992] have presented a more general logic for quantification, based in part
on Montague’s Universal Grammar [1970a] approach to categorial grammar, which extends
the rules of proof for {y. And while it goes further than our logic, it is still not complete with
respect to our intuitive construal of the quantification constructor.
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to Lambek’s calculus.'!

(16) Ara, Biz = Dy
ge/

A, B/C: = D/C: Aw.y

Of course, the dual backward slash versions of generalized composition and type
raising are necessary to achieve completeness. It is worth noting that general-
ized composition provides the logical perspective from which to understand the
slash passing mechanism of GpsG [Gazdar 1981b]. In GPsG, such schemes were
known as metarules in that they were used to generate a number of derived
phrase structure schemes as instances.

But Steedman did not stop with so-called harmonic instances of the com-
position schemes, nor did those who followed him such as Moortgat [1988]. In
addition, Steedman adopted disharmonic instances of composition, such as that
given below.

(17)  A/B:a, B\C: 5 = A\C: Az.a(f(x)) [Disharmonic Composition]

Such a scheme was required to account for non-peripheral extractions. It was
also adopted by Steedman [1985] to account for flexible word-order in languages
such as Dutch. Adding even one disharmonic scheme to Lambek’s calculus
results in a permutation closed variant of Lambek’s calculus [van Benthem
1986a]. To avoid this undesirable collapsing of generative power, as well as to
capture other syntactic restrictions on distribution such as island constraints,
Steedman only employed a limited number of instances of these schemes. Rather
than restricting our schemes in such an asymmetric fashion, we adopt Lambek’s
schemes in their full generality. To account for unbounded dependencies, we
adopt Moortgat’s [1988] gapping constructor, which is endowed with its own
inference schemes to allow for non-peripheral gaps. To account for free word
order, modal constructors have been employed with a logic that allows them to
be permuted [Hepple 1990, Morrill 1992a, Moortgat and Oehrle 1993].

3. THE LoGIC OF QQUANTIFICATION

There have been two primary approaches to quantification within categorial
grammar. The first was introduced by Montague [1970b], and involves a logical
scheme of quantifying-in. We adopt this approach, using the refined version in-
troduced by Moortgat [1988] for use with Lambek-style logical grammars. The
second approach, developed by Hendriks [1987, 1990], and later in a polymor-
phic version by Emms [1990], is similar in flavor to Steedman’s ccG approach
to unbounded dependencies in that it involves the use of type-shifting. In par-
ticular, a family of types and categories are assigned to quantifiers to account
for their distribution. In this way it is similar to the approach to quantification

11 Both the simple categorial grammar with only application, and Lambek’s categorial gram-
mars, have both been shown to generate all and only the context-free languages [Bar-Hillel,
Gaifman and Shamir 1960, Pentus 1992], even if restricted to only one variety of slash, either
forward or backward.
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Ken] believes ; Cedric] hit ; [np: 2]°
np: k s\np/s: bel np:c s\np/np: hit /
e
s\np: hit(z)
\e
s:hit(z)(c)
/e
s\np: bel(hit(z)(c)) \
e
s: bel(hit(z)(c))(k) Ji0
i
s/np: Az.bel(hit(z)(c))(k)
Figure 7: Slash Introduction Example
Ken believes Cedric hit
l S | l R
np: k s\np/s: bel np:c s\np/np: hit
tr tr
s/(s\np): AP.P(k) emp s/(s\np): AQ.Q(c)
s/s: Ax.bel(z)(k)
cmp

s/(s\np): A\V.bel(V(c))(k)
s/np: Az.bel(hit(z)(c))(k)

cmp

Figure 8: ccG Analysis with Composition and Type Raising

He also included dual versions of type raising and composition involving back-
ward slashes. Using these schemes, along with the slash elimination schemes
which are always assumed in categorial grammars, the derivation in Figure 7
can be carried out as in Figure 8. Steedman noted that analyses in this system
were like those of phrase structure grammars, but could almost always be ana-
lyzed in a purely left branching fashion. Steedman also generalized the notion
of composition beyond the simple case above, for instance to allow A/B and
B/C'/D categories to be combined.

All of the instances of composition and type raising can be derived in Lam-
bek’s calculus. But the converse does not hold; not every instance of Lambek’s
schemes can be derived by simple type raising and a finite number of com-
position schemes. Instead, Zielonka [1981] showed that composition must be
generalized in the manner of Geach [1972], and combined with the simple type
raising schemes above, in order to generate a system that is weakly equivalent
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Brad ] loves ] Pittsburghl

np: brad s\np/np: love np: pgh /e

s\np: love(pgh)
s:love(pgh)(brad)

\e

Figure 6: Slash Elimination Example

Natural deduction proofs can be read as yielding sequents of the same sort as
used in the sequent calculus; the sequence of assumptions forms the antecedent
of the sequent and the root the consequent. For instance, the derivation in
Figure 6 corresponds to the sequent

(14)  Brad, loves, Pittsburgh = s:love(pgh)(brad)

Note that the applications of the cut rule which would be required to derive
this sequent using the sequent calculus are implicit in the natural deduction
presentation.?

Things are a bit trickier in the case of the introduction schemes, often known
as rules of proof, which correspond to the right rules in the sequent calculus. The
introduction schemes allow hypothetical reasoning of the kind used in natural
deduction approaches to implicational logic. For instance, to establish that
¢— follows from a set of assumptions, we may assume ¢ as an additional
assumption in the proof of ¥». Such an assumption is then eliminated after v is
proved, thus establishing that ¢—1 follows from the original assumptions. In
Lambek’s categorial logic, /i allows us to derive B/A: Az.« from a sequence of
assumptions, if we can prove B:« from the same sequence of assumptions with
the addition of A:z as the rightmost assumption. Such a derivation is said to
discharge the hypothetical assumption A:z, which is notated by surrounding
the assumption in brackets, and indexing it with an integer to indicate at which
step the assumption was discharged. An illustration of a derivation involving
the introduction rule is given in Figure 7. This example shows how from the
assumptions Ken, believes, Cedric, hit, and np: z, in that order, we can derive
s:believe(hit(z)(c))(k). In the last step of the derivation, we discharge the
assumption of np: z, abstracting over its variable  and over its argument np
to produce the result s/np: Az.bel(hit(z)(c))(k). This example also illustrates
the unbounded nature of assumption introduction and discharge in Lambek’s
categorial grammars.

In Steedman’s [1985, 1987, 1988] Combinatory Categorial Grammars, phrase
structure schemes for type raising and composition are used to achieve effects
similar to those of Lambek’s scheme for slash introduction.

(15) a. Ara = A/(B\A): AP.P(«) [Forward Type Raising]
b. A/B:a B/C:3= A/C: dx.a(f(x)) [Forward Composition]

10See [Girard, Taylor and Lafont 1987] for more details on the correspondence between
sequent calculi and natural deduction.
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/1 \l

s\np/np:hit, np:c = s\np: hit(z) np:a, s\np:hit(z) = s:hit(z)(a)

C

/T

np:a, s\np/np:hit, np:x = s:hit(z)(a)

np:a  s\np/np:hit = s/np: Az.hit(z)(a)

Figure 4: Derivation of Albert hit

Lexical Entries

€

{

A«

Slash Elimination

Bﬁ A\B:a

EE———— \e
A:a(f) Ara(B)

Slash Introduction

[A:z]" [A:z]"
B: B:
_ Y _ T
B/A: Az.a B\A: \z.«

Figure 5: Natural Deduction Lambek Calculus

more practical, as noted by Barry et al. [1991]. We provide a natural deduc-
tion presentation of Lambek’s logic in Figure 5. Some discussion concerning
the interpretation of these schemes is in order. We read the lexical scheme
as stating that we can derive an expression’s lexical entry from it. The slash
elimination schemes, often known as rules of use, are analogues of the left se-
quent schemes. For instance, forward elimination, /e, allows us to combine a
derivation of B: 3, the structure of which 1s represented by the vertical ellipses,
with a derivation of A\ B:«, the structure of which is also ellided, to produce
a derivation of A:«(f3). Backward elimination is analogous. The use of these
schemes is illustrated in Figure 6. Derivations simply involving elimination and
lexical schemes are analogous to phrase-structure trees. Here the logical, al-
beit incomplete, nature of phrase structure approaches to categorial grammar
is clear; the tree structure corresponds to the structure of a logical derivation.
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{ l \l
John = np:j runs = s\np:run np:j s\np:run = s:run(j)

C

np:j runs = s:run(j)

John runs = s:run(j)

Figure 3: Lexical Analysis of John runs

A simple analysis illustrating lexical insertion, cut and the left slash rules is
provided in Figure 3. Note that the use of \! corresponds to functional appli-
cation semantically. It is called a left rule because it eliminates an occurrence
of a constructor from the left side of a sequent. Left rules are often called rules
of use, as they indicate how a constructor is to be used in a proof. The cut rule
is simply used to chain analysis steps; it states that if a subsequence I' can be
analyzed as B: 3, then B: 3 can be used in place of ' in a derivation.’

The right rules characterize proofs with occurrences of a constructor on the
right hand side of a sequent. Such rules are often called rules of proof, as
they indicate how to derive a category with a particular top-level constructor.
Consider the application of the right rule /r in Figure 4. Without the right
rules, Lambek’s system reduces to the purely applicative categorial grammar,
originally developed by Ajdukiewicz [1935], and extended to directional slashes
by Bar-Hillel [1950, 1953]. The left rules for the slash constructor play a crucial
role in our system for generating scopings in incomplete phrases, for sloppy
anaphora, for coordination, and for generating alternations with operators such
as adverbials and negation.

The sequent-based presentation of Lambek’s categorial logic is both logi-
cally straightforward and of practical utility in proving meta-theorems. But
for object-level derivations, a natural deduction version of Lambek’s logic is

[Moortgat and Oehrle 1993] for details and linguistic applications.

?Lambek’s original presentation of L was cut-free in that every provable sequent could be
derived without the use of cut. To achieve this, the effect of cuts has to be built into the left
rules, as in Gentzen’s original presentation of sequent rules for propositional logic:

'y = B:j3 ', A:a(8), F3:>C:'y\l,
'y, A/B:a, I'y, T's = C:y

'y = B:j3 ', A:a(8), F3:>C:'y/l,
'y, T2, A\B:a, I's = C:y

Lambek did not consider lexical entries, but those too may be integrated with the cut rule,

as in:
Iy, Arer, Ty = B:83, [e = A:a € Lex]
', e I'o = B:@

Note that all of these rules can be derived from our presentation. One benefit of Lambek’s

presentation is that it shows why derivability is decidable; the antecedents of sequents reduce
their complexity, as measured by the sum of the number of expressions and slash constructors.
We will not be concerned with cut-free presentations of our calculi, but the reader is referred
to Moortgat and Oehrle [1993] for discussion.
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Lexical Entries

N | [e = A:a € Lex]
e=> Ara
Slash Left
/1 \l
A/B:a, B:f = A:a(f) B:3, A\B:a = A:a(f)

Slash Right
I Avce = Bra Az, '= B:ra

/T

R — \r
I'= B/A: dz.a I'=> B\A: \z.a

[T non-empty, z fresh]

Identity
N
Ara= Ara
Cut
I'»= B:g 1, B: 8, F3:>A:ap
Iy, Iy, T's = Aca

Figure 2: Sequent Presentation of Lambek’s Associative Calculus

Permutation Weakening Contraction
L, ¢, 4, T'HE Ik L, ¢, ¢, I'Ey
L, o, ¢, T/ E R L, ¢, 'k

Logics without some or all of these rules are said to be substructural. The full analogy to logic
is brought out by viewing the functor categories A/B and A\B as propositions of the form
B— A, with basic categories as propositional constants. In this way, our elimination rules are
instances of modus ponens, and our introduction rules represent hypothetical reasoning.
The connection to terms is then given by the Curry-Howard morphism, which relates propo-
sitional implicational formulas and simple types, and also relates proofs in implicational logics
to the construction of well-typed A-terms. The morphism component of the correspondence
stems from the normalization structure; normalizing proofs in intuitionistic implicational logic
corresponds to n-reduction and B-reduction of A-terms [Girard, Taylor, and Lafont 1987].
An even stricter substructural regime could be enforced by taking the antecedentsin sequent
to be bracketed strings. In this case, the result is Lambek’s non-associative calculus. Adding a
structural rule of association to the non-associative calculus results in the associative calculus.
One of the recent innovations in categorial grammar has been to allow structural modalities,
such as the ! of linear logic, which allow the importation of the resource management of a
more lenient logic, and modalities such as the modal logic S4’s O, which can be used to limit
more lenient logics to stricter resource management. See [Hepple 1990a], [Morrill 1992a], and
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Categorial grammar is completely lexicalist, assuming a universal deductive
system, and relegating all language-specific information to the lexicon. In a cat-
egorial grammar, the lexicon provides a relation between expressions, syntactic
categories and A-terms of the appropriate type. Here, we assume that a lexicon
is given by a finite® relation Lex C Exp x (Cat x Term), with the additional
restriction that if (e, (A4, o)) € Lex, then « is a A-term of the type of A. For no-
tational convenience, we will write e = A:« if {e, (A, a)) € Lex. This definition
allows lexical ambiguities, where a given expression can be assigned to multiple
categories and/or meanings. We do not discuss methods for structuring the
categorial lexicon, but see [Carpenter 1992a] and [Pollard and Sag 1987].

Lambek’s proof theory characterizes a relation between expressions and their
meanings which is mediated by syntactic category assignments. The basic se-
quents in the Lambek calculus are of the form:

(13) Apiaq,.. . Apiay, = At

A provable sequent of the above form is taken to indicate that expressions of
categories A; with meanings «; can be concatenated to form an expression of
category A with meaning «. In addition, a lexical insertion scheme connects
expressions with their lexical entries, which consist of category-meaning pairs.”
Lambek presented his categorial grammar in the form of a sequent calculus. We
present Lambek’s calculus, enriched with van Benthem’s approach to semantic
assignment, in Figure 2. We must be careful in this system to use fresh variables
for the right rules; no two right rules in a derivation are allowed to introduce
the same variable. Furthermore, all of our later rules will also be subject to
this restriction. In addition, we require the variables introduced by the right
rules to be of the appropriate type. A simple inductive argument suffices to
show that if we use appropriately typed variables, then every occurrence of a
A-term in a derivation will be of the appropriate type for the category to which
it 1s linked. All of our subsequent rule schemes will be subject to this same
restriction, and we will not mention type soundness again. Finally, we require
that the sequences I' in the right rules for slashes be non-empty. Without this
restriction, we would be able to derive unwanted categorizations for the empty
string, such as n/n: AP.P, from the combination of the right slash rule and the
axiom instance n: P = n: P.

It is important to note that for sequents of the form I' = A: «, we take I to
be a sequence of expressions and category-meaning pairs. We use the notation
I'y, T for the concatenation of sequences.®

a set of basic expressions. This approach was the basis for Lambek’s [1961] non-associative
calculus. For a survey of the ramifications of the choice of expression algebra, both on the
logic and its proof theory, see [Hepple 1990a], [Morrill 1992a] and [Moortgat and Oehrle 1993].
6See Carpenter [1991, 1992a] for a discussion of the linguistic utility and computational
drawbacks of adopting lexical rules which potentially generate an infinite lexicon.

"The lexical insertion scheme was not part of Lambek’s original presentation, nor is it
used by many authors. Instead, the lexicon is usually related to the sequents as we have just
outlined.

8In classical and intuitionistic implicational logics, the antecedents can also be interpreted
as sequences, providing we allow the following structural rules:
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Category Description

n/n adjective

np/n determiner

n\n/np (nominal) preposition

n\n relative clause, (nominal) prepositional phrase
s\np verb phrase, intransitive verb

s\np/np transitive verb

s\np/(s\np) adverb, auxiliary, intransitive control verb
Figure 1: Some Useful Categories

A category A\B or A/B is said to be a funclor category and to have a domain
or argument category of B and a range or result category of A.* A functional
category of the form A/B is said to be a forward functor and looks for its
B argument to the right, while the backward functor A\B looks for its argu-
ment to the left. Functor categories are associated with functional types in a
straightforward way:

(12)  Typ(A/B) = Typ(A\B) = Typ(B)— Typ(A)

With our choice BasCat of basic categories, some useful functional categories
in Cat are given in Figure 1. We drop parentheses according to the convention
that all of our category constructors are left associative, and that functional
type constructors are right associative. Note that there are infinitely many
categories, which is unproblematic for categorial logic, for the same reason that
the infinity of propositional formulas is unproblematic for propositional logic,
namely that categoryhood is easily decidable. In fact, our analyses exploit the
open-ended nature of the category system in fundamental ways.

2.2. Lambek’s Associative Calculus

To model expressions, we assume a finite set BasExp of basic expressions, and
take the full set of expressions to be the collection of non-empty strings over
the basic expressions, notated Exp = BasExpt. We use - for the operation of
concatenation, which we often omit, representing concatenation by juxtaposi-
tion. Concatenation obeys associativity in that a - (b-¢) = (a-b) - ¢, so we will
write both as @ - b - ¢ or just a b ¢.®

*We employ Steedman’s [1985] notation for categories, rather than Lambek’s, because it
allows logical types to be read off categories directly and because it allows more parentheses
to be eliminated in our grammars. Lambek used the notation B\ A for our A\ B.

5We have modeled expressions as elements of a free semigroup (BasExp"', -) generated
by concatenation over BasExp. It is possible to interpret categorial grammars in arbitrary
groupoids (X, -), where X is an arbitrary set of expressions structured by a binary operation -.
The most common such choice is free groupoids, which correspond to bracketed strings over
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derivations on the other. This connection provides a strictly compositional
semantic interpretation scheme. In this section, we present a proof-theoretical
version of Lambek’s categorial logic.

2.1. Basic and Functor Categories

As categorial grammar is designed to relate expressions to their meanings, we
begin with a few comments about meanings. We represent meanings with A-
terms drawn from Church’s simply typed A-calculus.? For our purposes, two
primitive semantic types suffice:

(9) Type Domain

Ind Individuals
Prop  Propositions

We use o—7 for the type of functions from objects of type o to objects of type
7. For each type 7, we assume a collection of constants, Con,, and a countably
infinite set of variables, Var,. We assume that there are logical constants for
the standard logical operators, quantification and equality, which respect the
assignment of truth to propositions.3

In order to construct syntactic categories, we begin with a finite set BasCat
of basic categories. Each basic category C'is associated with a (not necessarily
primitive) semantic type Typ(C'). For our purposes, it will suffice to assume

the following basic categories and type assignments:

(10) Category  Type Description
np Ind noun phrase
n Ind—Prop noun
s Prop sentence

In addition to the basic categories, categorial logics provide a repertoire of
category constructors, which are used to freely generate the full set Cat of
categories from the set of basic categories BasCat. We begin with the binary
“slash” constructors, introduced by Bar-Hillel [1950], following Ajdukiewicz
[1935], which allow us to construct the set Cat of categories as the least set
such that the following holds.

(11) a. BasCat C Cat
b. A/B,A\B € Cat if A, B € Cat

20ther authors have chosen different type systems in which to interpret categorial gram-
mars. For instance, Chierchia and Turner [1988] interpret a Montagovian categorial grammar
over the monotyped A-calculus. But as we are more interested in the syntax/semantics inter-
face, and not in particular semantic assumptions, our choice of type system is of no particular
significance.

3Our purpose is not to present a theory of intensionality, and thus we will not be partic-
ularly concerned with the structure of the domain of propositions, other than that there be
some method of extracting the truth or falsity of a proposition from it and that the standard
logical operations are defined over it. For concreteness, propositions might be taken to be
functions from possible worlds to truth values, empiricist criteria of verification, as structured
propositions of some kind, or as unanalyzed elements of a Heyting algebra partitioned into
true and false propositions.
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We also account for the interaction between quantification and anaphora.

(7) a. Every Englishman supports his football team.

b. Only John believes he will win the upcoming election.

In (7)a, we get two readings. One of these readings allows the possessive pro-
noun his to be read deictically or as picking up a previously introduced an-
tecedent. The second picks up the subject of the sentence, every Englishman.
Following Montague, we treat pronouns as variables, which allows them to pick
up arbitrary antecedents. The two readings of (7)a then follow from the nature
of quantification. The case of (7)b is more interesting, as it involves a a dis-
tinction in the scope of the pronominal binding. We treat it as a strict/sloppy
distinction, where either John is the only one who believes John will win, or
John is the only one with a faith in his or her own ability to win. Again, we need
no additional stipulations; the possibilities are predicted by the combination of
our approach to anaphora and Lambek’s categorial logic. The same mechanism
also allows sloppy readings of anaphors in verb phrase ellipsis without recourse
to reconstructive analyses, even of the logical variety proposed by Dalrymple,
Shieber and Pereira [1991].

In the interest of space, we leave aside the independent issue of the interpre-
tation of plural noun phrases. In other sources [Carpenter 1992b], we address
this 1ssue, noting that the logical approach to quantifiers solves some difficult
puzzles such as those arising from the following examples.

(8) a. Three examiners marked six scripts.

b. The students gathered outside the deans office and shouted in protest.
The committees met.
d. John and Bill believe they like each other.

[«

For instance, our approach to plurals allows for the eight readings of (8)a, pre-
dicted by Davies [1989] from the scope alternations and collective/distributive
distinction, as well as his ninth reading in which there are three examiners
and six scripts and each examiner marked each script. In cases such as (8)b,
the categorial logic of Lambek combined with a natural approach to plurals
accounts for the possibility of truthfully coordinating “distributive” and “col-
lective” predicates. We also get a natural account of the ambiguity in (8)c, and
of the multiple ambiguities arising from plural anaphora, reciprocals and scope

in (8)d.

2. CATEGORIAL LogGIC

Our point of departure is Lambek’s [1958] associative calculus for categorial
grammar. In the generative tradition, Lambek provides a decidable proof theory
which specifies the relation between expressions and their syntactic categories.
As noted by van Benthem [1983b], the Curry-Howard morphism [Howard 1980],
about which we have more to say below, provides the natural bridge between
categories and their types on the one hand, and between syntactic and semantic
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In (5)a, we see how quantifiers, as boolean categories, are allowed to be con-
joined without introducing scope ambiguities. This i1s simply an instance of the
general boolean coordination scheme. The introduction scheme for Moortgat’s
quantification constructor also predicts the coordinability of quantifiers and
names, which we treat as purely referential, as seen in examples such as (5)b.
In (5)c, we see how determiners behave when their restriction is a coordinated
noun. In the case of (5)c, there is an ambiguity between two readings, one in
which everyone who is both a vegetarian and socialist demonstrated, and a sec-
ond in which every vegetarian demonstrated and every socialist demonstrated.
We see a similar ambiguity in (5)d, where the scope of the quantifiers is coordi-
nated. On one reading, every student ran or every student jumped, and on the
other, every student either ran or jumped. Partee and Rooth’s [1983] example,
(5)e, with an intensional verb taking a coordinated quantified object, leads to a
three-way ambiguity. On the narrow scope coordinator, de dicto reading, John
is seeking anything that happens to be either a pen or a pencil. On the de
re reading, there is a particular pen or a particular pencil such that John is
looking for it. The third reading involves wide-scope for the coordinator, but
a de dicto reading for the objects, in which John is either seeking a pen, and
he doesn’t care which pen, or he’s seeking a pencil and he doesn’t care which
pencil. Partee and Rooth make this third reading more plausible by supposing
it 1s followed with but I don’t know which. These three readings fall out from
the combination of hypothetical reasoning in Lambek’s calculus and the stan-
dard approach to de dicto/de re ambiguities, in which intensional verbs take
generalized quantifiers as arguments. The same mechanism accounts for the
possibility of the coordination of intensional and non-intensional verbs, as in
(5)f. Our grammar even captures the fact that in such cases, the intensional
verb can be read de dicto, and the extensional verb de re. In (5)g, we see
that coordination of material involving a quantifier does not allow quantifiers
in the coordinated material to interact with each other. On the other hand,
coordinated quantifiers can take wide scope with respect to other constituents,
as seen in (b)h, where a different student could have read each book and inter-
acted with each presentation. All of these facts can be derived using Lambek’s
introduction schemes for the categorial complement constructors.

Quantification also has non-trivial interactions with unbounded dependency
constructions.

(6) a. Every person that someone took a picture of was pleased.
b. A table every leg of which broke fell over

In (6)a, we see that the scope of the embedded quantifier must remain narrow.
Our account of this fact follows from the logical structure of our derivations. In
this way, our analysis provides a categorial analogue of Pereira’s [1991] deductive
system. In (6)b, which involves pied-piping of a quantified noun phrase, we
see that the quantifier must take scope within the relative clause, and cannot
escape to take sentential scope, which would involve a different table for each
leg. Somewhat surprisingly, Morrill [1992b] has shown that relative pronouns
can be treated as a kind of quantifier, providing a general account of their uses
in pied-piping and in non-pied-piping cases.



4 BOB CARPENTER

Such examples are problematic for accounts of quantification based on storage
mechanisms, and also for transformational systems in which subjects are vp-
external. In (3)a, there is an ambiguity between wide and narrow scope of the
subject quantifier with respect to the negation operator. In the next example,
(3)b, the quantifier is allowed to scope either wholly outside, wholly inside, or
in between the adverbial and the negation. These cases receive a categorial
analysis similar to that proposed for raising control in (3)c and (3)d, both
of which admit scope ambiguity. Next, we see how quantifiers appearing as
equi-type controllers fail to provide narrow scope alternatives, as in (3)e, which
i1s unambiguous. This is due to a lexical difference between raising and equi
controllers, in which equi verb controllers are restricted to noun phrases, rather
than allowing generalizing quantifiers. In the last example, (3)f, there is an
ambiguity based on whether or not the quantifier’s scope is within the verb
phrase complement or over the entire sentence. To account for these facts,
we follow the standard categorial approach to control [Steedman 1985]. The
interactions stem from the ability of Lambek’s categorial calculus to introduce
and discharge hypothetical categories. The distinction between these two forms
of control is treated lexically.

Scope ambiguities similar to those for explicit operators occur with respect
to the scope of tenses, relative to both nominal quantifiers, nominal tenses, tem-
poral adverbs, and quantificational adverbs. Consider the following examples.

(4) a. Every kid ran.

b. A student would frequently interrupt class to ask a question.

Even in simple sentences such as (4)a, there is ambiguity concerning whether
there was a single time in the past at which every kid ran, or whether for every
kid there is simply some time in the past at which the kid ran. Generalized
quantifiers can take scope within or outside of temporal adverbials, as seen in
(4)b. We will not consider the interactions of tense and scope here, but refer
the reader to [Hinrichs 1988], both for further data on the interactions between
tense and quantification, and for a Reichenbachian approach to tense which
could be integrated with our analysis of nominal quantifiers.

The interaction between quantifiers and coordination 1s often problematic
for theories with otherwise adequate, independent accounts of the two phenom-
ena. Consider the following cases.

()

One professor and every student attended the lecture.

T

Jones worships Smith and every other English professor.
Every vegetarian and socialist demonstrated on the cut.
Every student ran or jumped.

John 1s looking for a pen or a pencil.

John was looking for and finally found a pen.

Every student liked but some professor disliked the talk.

T S )

At least one student read every book and interacted with every multi-
media presentation.
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within relative clauses, and within possessive determiners.

(2)

A student in every class failed.

T

A picture of every student was taken.

A student who every kid likes met with Fred.
What every kid rode was a bicycle.

Every kid’s favorite toy broke.

SRR

The receptionist for every office is underpaid.

The first example, (2)a, displays a two-way ambiguity. One reading involves
a student who is in every class; the other involves a possibly distinct student
for each class. This ambiguity must be captured by allowing quantifiers to re-
duce within nominal complements, both to treat (2)a and (2)b uniformly, and
to prevent the well known problem arising from unbound variables when the
embedded quantifier is allowed sentential scope that is narrower than the em-
bedding quantifier. Unbound variables are eliminated by the logical structure of
our deductive rule for quantifier insertion, rather than by the ad hoc stipulation
of May [1985], Hobbs and Shieber [1987] and Pollard and Sag [in press], or by
complicating semantic representations, as in nested accounts of Cooper storage
[Keller 1988; Gerdemann and Hinrichs 1991]. Next, it has been generally as-
sumed that quantifiers are not allowed to escape from relative clauses to take
sentential scope, thus yielding only one reading for (2)c. Such restrictions are
easily captured using Morrill’s [1990a, 1992b] approach to islandhood in cate-
gorial logic; in fact, such an approach also captures the islandhood of relative
clauses with respect to extraction. Example (2)d shows that quantifiers can
also be bound within free relative clauses, but can also escape to take sentential
scope. On the relative internal reading, there would be a single object that
every kid rode, which happens to be a bicycle. Under the sententially scoped
interpretation, each kid could have ridden a different bicycle. Finally, when a
quantifier occurs as a possessor, as in (2)e, we see that there is an ambiguity
depending on whether the definite existential introduced by the possessive takes
scope narrowly or widely with respect to the possessor. In this case, there can
be a toy which is every kid’s favorite, or a possibly different favorite toy for
each kid. Both possessives and free relatives will be treated as a kind of defi-
nite description operator, from which the scoping facts follow. Our referential
approach to definites also accounts for the ambiguity of (2)f, which admits a
reading in which there is a different receptionist for each office.

There are subtle interactions between quantifiers and other operators, such
as control verbs, adverbials and negative particles.

(3)

Everyone didn’t attend the party.

T

Everyone probably didn’t attend the party.
Someone seems to be in attendance.
John believes everyone to have read a book.

John persuaded everyone to be quiet.

-0 Ao

John wants to like everyone.
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same fault as other non-logical models, namely that they require filters such as
variable binding conditions to reject otherwise well-formed derivations.

Many generalizations concerning the logical possibilities for the behavior of
natural language quantifiers and determiners have been recognized and cata-
logued [Barwise and Cooper 1981; Keenan and Stavi 1986; van Benthem 1983a,
1984]. Our approach, based on generalized quantifiers and determiners, is of
course compatible with these empirical observations. But our primary concern
is the syntax/semantics interface and the ability of quantifiers to take alterna-
tive scopes, rather than the independent characterization of possible natural
language determiners and quantifiers.

The remainder of this paper is organized as follows. In the rest of this
introductory section, we illustrate the kinds of data with which we will be
concerned. We begin by introducing introduce Lambek’s [1958] categorial logic,
which deals exclusively with syntactic phenomena, along with van Benthem’s
[1983b] method, derived from the Curry-Howard morphism [Howard 1980], of
deriving logical representations from syntactic representations.

The most obvious occurrences of quantified noun phrases are as arguments
to verbs, as in the following examples.

(1) a. A student read every book.
b. John gave a book to every child.

c. John is seeking a good job.

Example (1)a is the ordinary case of a subject/object scope ambiguity; the
sentence can mean either that for every student, there was some book that
student read, or that there was a single student who read every book.! Our
approach to quantification is basically that of Moortgat’s [1991] categorial logic
formulation of Montague’s term insertion rule [1970b]. The basic principle is
that a quantifier acts as a simple noun phrase and then takes scope at some
sentence in which the quantifier is embedded. One advantage of Moortgat’s
formulation over Montague’s is that there is no need for dummy expressions
such as he,. The next example, (1)b, also has two readings, depending on
the relative scope of the object and prepositionally marked object. The final
example, (1)c, involves an intensional argument position, which gives rise to
the so-called de dicto/de re ambiguity. On the de re reading, John is pursing
a particular job, whereas on the de dicto reading, his search is for any old job,
as long as it is a good one. Again following Montague, we simply allow the
intensional verbs like seek to take generalized quantifiers as arguments. The
introduction rule for quantifiers, which is the dual of the term insertion rule for
eliminating quantifiers, does the rest of the work in the same way as Montague’s
type raising.

In addition to simple cases of quantifiers occurring as verbal complements,
we consider their role within the noun phrase. In particular, we consider quanti-
fiers serving as nominal prepositional objects, as the objects of relational nouns,

1We assume, following Fodor and Sag [1982], that the indefinite article a can function as a
generalized quantifier; we will have little to say concerning its ability to introduce a discourse
referent.
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QUANTIFICATION AND SCOPING:
A DEDUCTIVE ACCOUNT

ABSTRACT. In this paper, we argue that the grammatical scopings of quantifiers should
be treated by deductive methods. In support of this position, we offer a logical treatment
of almost all previously proposed substantive constraints on quantifier scoping, including
those imposed by coordinate structure, control verbs, unbounded dependency constructions,
anaphoric dependency and nested dependent quantifiers. These are correctly captured by
a handful of linguistically motivated and logically natural inference schemes for quantifi-
cation, coordination and unbounded dependency, combined with the previously motivated
function introduction and elimination schemes of categorial logic. In addition, we argue
that phrase-structure and transformational accounts of similar phenomena at best provide an
approximation of the logical approach.

1. INTRODUCTION

In this paper, we argue that an adequate approach to natural language quan-
tification, and in particular, its interaction with other mechanisms such as co-
ordination, control and unbounded dependencies, can best be formulated as a
deductive system using a categorial logic. The logical perspective on natural
language syntax and semantics is enlightening from both an empirical and a the-
oretical standpoint. Our goal is to show that a simple categorial logic, amended
with inference rules for quantification, unbounded dependencies and coordina-
tion, provides an elegant and precise solution to the often puzzling behavior of
quantifiers and their interaction with other grammatical phenomena.

A secondary goal of this paper 1s to show that previous accounts of quan-
tification, especially accounts of its interaction with other constructions, can
at best be viewed as approximations to the logical account provided here. In
particular, phrase structure based accounts, such as Cooper’s [1982, 1983] for-
mulation of quantifier storage and its later nested formulation [Keller 1988;
Gerdemann and Hinrichs 1990], the aPsG slash-based account of unbounded
dependencies [Gazdar 1981b], which is closely related to the phrase structure
based catgorial accounts [Geach 1972; Steedman 1985], can both be viewed as
approximating the natural deduction version of our inference rules. The insight
behind our logical approach is that the interactions of various scoping opera-
tions, such as quantification and unbounded dependencies, follows from their
characterization as inference rules, rather than from ad hoc constraints placed
on representations. Similarly, transformational accounts of quantifier scoping
[May 1985], to the extent that they are correct, can be seen as nothing more
than “phrase marker” approximations of logical derivations. Insofar as they
freely generate scope ambiguities using general transformations, they suffer the



