Definiteness in Hungarian: Semantic at the leaves, syntactic through the branches

Elizabeth Coppock

Heinrich Heine University

Semantic and typological perspectives on definites Düsseldorf, June 1-2

2 Proposal

Hungarian subjective and objective conjugations

- (1) Lát-om a madar-at see-1.SG.DEF the bird-ACC 'I see the bird'
- (2) Lát-ok egy madar-at see-1.SG.IND a bird-ACC 'I see a bird'
- (3) Vár-ok wait-1sG.IND 'I'm waiting'

Distribution of objective conjugation

DEF

a/az 'the' ez/az 'this'/'that' b'armelyik 'whichever' valamennyi 'each' hányadik 'which number' melyik 'which' ő 'him/her'

IND

egy 'a'/'one', kettő 'two' néhány 'some' sok 'many' minden 'every' hány 'how many' mi 'what' téged/engem 'you'/'me'

Picture complicated by possessives.

1st and 2nd pronouns: Definite yet trigger subjective

- (4) Lát-nák ő-t/ők-et see-3PL.DEF him/her-ACC/them-ACC...
 'They see him/her/them'
- (5) Lát-nak engem/téged/minket/... see-3PL.IND me/you/us/... 'They see me/you/us/...'

minden 'every'

Minden triggers subjective normally:

(6) Eltitkol-ok minden találkozás-t keep.secret-1SG.IND every meeting-ACC 'I keep every meeting secret.'

Yet is a 'strong' determiner:

(7) *Van minden könyv.is every book'There is every book.'

So minden is strong, yet 'indefinite'.

Support: Consistency and completeness

Terms have these logical properties (Löbner 2000):

- consistency: $X+(not-P) \Rightarrow not(X+P)$
- completeness: not-(X+P) \Rightarrow X+(not-P)

Consistency (yes): Everybody didn't come \Rightarrow Not everybody came Completeness (no): Not everybody came \Rightarrow Everybody didn't come

So *minden* 'every' is not a term. (\Rightarrow not definite?)

minden + possessives

If *minden* is indefinite, then we must cope with the existence of indefinite phrases that trigger the objective conjugation: *minden* phrases with a possessed noun:

Ismer-em minden titk-od-at.
 know-1SG.DEF every secret-2SG.POSS-ACC
 'I know your every secret.'

Néhany 'some' + possessor

- (9) Ismer-em/Ismer-ek néhány titk-od-at. know-1SG.DEF/know-1SG.IND some secret-2SG-ACC 'I know some secrets of yours'
- (10) Lát-om/Lát-ok valaki-d-et.
 see-1SG.DEF/see-1SG.IND someone-2SG-ACC
 'I see someone of yours'

Néhány 'some' + poss: clearly indefinite

Existential constructions:

(11) Van néhány könyv-em itt Pest-en. is some book-POSS.1SG here Pest-in 'There are some of my books here in Pest.'

Néhány könyvem 'some of my books' is not consistent:

Some of my books are not here \Rightarrow It is not the case that some of my books are here

Egy 'a' + possessed noun

- (12) János egy könyv-é-t olvas-om John a book-his-ACC read-1SG.DEF 'I'm reading a book of John's.'
- (13) Egy könyv-em-et /-ünk-et olvas-om. a book-POSS.1SG-ACC -POSS.1PL-ACC read-1SG.DEF 'I'm reading a book of mine/ours.'

(Gerland & Ortmann 2009)

Indefinite possessors

Objective conjugation even when the possessor and the possessum are both indefinite:

(14)

Csak egy diák-nak két dolgozat-á-t talál-t-a only one student-DAT two paper-3SG.POSS-ACC find-PST-3SG.DEF jutalom-ra méltón-ak a zsűri. prize-to worthy.PL the juri.NOM 'The jury found only one student's two papers worthy of a prize.'

Note: OK even if the winner submitted >2 papers!

Question words

- (15) Hányadik-at kér-ed? which.number-ACC want-2SG.DEF 'Which one do you want?'
- (16) Melyik-et kér-ed? which-ACC want-2SG.DEF 'Which one do you want?'

Are *wh* words definite?

Hypothesis: Specificity

Specificity Hypothesis

A noun phrase triggers the objective conjugation if and only if it is specific.

Specificity difference?

Bartos (2001, 314): "there is absolutely no definiteness or specificity difference" between:

(17) a.

Eléget-em a től-ed kapott minden level-et. burn-1SG.DEF the from-2SG.POSS received every letter-ACC 'I burn every letter received from you.'

b.

Eléget-ek minden től-ed kapott level-et. burn-1SG.IND every from-2SG.POSS received letter-ACC 'I burn every letter received from you.'

Szabolcsi (1994, 210): "whereas the presence of the article is required in one of the examples and prohibited in the other, this makes no difference for interpretation".

Specific object, subjective conjugation

Epistemically specific indefinites (Farkas 2002):

(18) Minden nap egy görög énekes-t hallgatt-ak/*-ák. every day a Greek singer-ACC listened-3PL.IND/-3PL.DEF

> Máriá-nak hív-ják. Maria-DAT call-3PL.DEF

'Every day, they listened to a Greek singer. Her name is Maria.'

(Coppock & Wechsler 2012, ex. (52))

Specific object, subjective conjugation

Partitives (specific in Enç's (1991) sense):

- (19) A regény-ek közül Péter el-olvas-ott négy-et. the novel-PL from-among Peter PERF-read-3SG.PST.IND four-ACC 'Of the novels, Peter read four.'
- (20) A cukor-ból Anna tett a kávé-já-ba the sugar-ELAT Anna put.3SG.PST.IND the coffee-POSS.3SG-into valamennyi-t some-ACC

'Of the sugar, Anna put some in her coffee.'

DP-hood hypothesis

DP-hood hypothesis

The objective conjugation is used if and only if the object is a DP (or larger).

(Bartos 2001, building on Szabolcsi 1994, adopted in É. Kiss 2000 and É. Kiss 2002, 49,151–157)

- Some personal pronouns (which one would otherwise assume are DPs) trigger the subjective conjugation.
- Indefinite nominals with (non-extracted) dative possessors are possible with the subjective conjugation for some speakers.
- CPs can trigger the objective conjugation; CPs ≠ DPs.
- Nominals of the same syntactic category differ in whether the noun phrase they head triggers the objective conjugation.

- Some personal pronouns (which one would otherwise assume are DPs) trigger the subjective conjugation.
- Indefinite nominals with (non-extracted) dative possessors are possible with the subjective conjugation for some speakers.
- CPs can trigger the objective conjugation; CPs *≠* DPs.
- Nominals of the same syntactic category differ in whether the noun phrase they head triggers the objective conjugation.

- Some personal pronouns (which one would otherwise assume are DPs) trigger the subjective conjugation.
- Indefinite nominals with (non-extracted) dative possessors are possible with the subjective conjugation for some speakers.
- CPs can trigger the objective conjugation; CPs ≠ DPs.
- Nominals of the same syntactic category differ in whether the noun phrase they head triggers the objective conjugation.

- Some personal pronouns (which one would otherwise assume are DPs) trigger the subjective conjugation.
- Indefinite nominals with (non-extracted) dative possessors are possible with the subjective conjugation for some speakers.
- CPs can trigger the objective conjugation; CPs \neq DPs.
- Nominals of the same syntactic category differ in whether the noun phrase they head triggers the objective conjugation.

Same category, different definiteness

- (21) Eltitkol-om valamennyi találkozás-t keep.secret-1SG.DEF each meeting-ACC 'I keep each meeting secret.'
- (22) Eltitkol-ok minden találkozás-t keep.secret-1SG.IND every meeting-ACC 'I keep every meeting secret.'

Structure of the DP according to É. Kiss (2000)

TopP? < DP < DetP < (AgrP) < NumP < (PossP) < NP

minden and valamennyi below D

Both co-occur with *az*:

- (23) a *(Mari) valamennyi/minden kalap-ja the Marie each/every hat-3sg.Poss 'each/every one of Marie's hats'
- (24) a *(neked kiosztott) valamennyi/minden feladat the you-DAT assigned each/every task 'each/every task assigned to you'

(And both require intervening material.)

Maybe valamennyi is a Det and minden is a Num?

minden above Num

(i) *Minden* co-occurs with numerals:

(25) Minden tíz falu épit-sen egy templomot! every ten village build-IMP.3SG a church 'Every [set of] ten villages should build a church.'

(ii) Nums can be adjacent to *az*:

(26) Mi a különbség a két könyv között? what the difference the two book between 'What is the difference between the two books?'

but *minden* cannot be immediately preceded by a(z):

(27) (*a) { valamennyi, minden } kalap-ja the each every hat-3sg.Poss 'each/every one of her/his hats'

Haplology

Why is intervening material required? Szabolcsi (1994): Haplology rule deletes Det/D after D. (28) $[_{DP} [_{D} \xrightarrow{a}] [_{Det} valamennyi] feladat]$ the each task But then why not: (29) $*[_{DP} [_{D} \xrightarrow{a}] [_{Det} minden] feladat]$ the every task

Movement

É. Kiss (2000): Determiner movement from Det to D, blocked by an intervening projection.

Two possibilities

- *Minden* does not move. Then it should be found adjacent to *az*, contrary to fact.
- *Minden* does move. Then it should trigger the objective conjugation.

Conclusion: We must give up the DP-hood hypothesis!

Outline

Lexical D-linking hypothesis

Lexical D-linking hypothesis

If the referential argument of a phrase is *lexically specified* as D-linked, then the phrase triggers the objective conjugation.

D-linking

D-linking

A discourse referent is D-linked if:

- it is anaphoric, or
- it is a mereological part of a discourse referent that is anaphoric.

Anaphoricity

A discourse referent is anaphoric if it is a discourse referent for which an antecedent needs to be provided. (Formally: in the universe of a presupposition-DRS.)

Referential argument

Referential argument

The referential argument of a phrase is the discourse referent u such that: when the phrase combines an expression denoting property P, P is predicated of u.

- If the DP is type *e*, it is the semantics of the DP.
- If the DP is type $\langle et, \langle et, t \rangle \rangle$, then it is the quantified variable.

Referential arguments are shared along an extended projection (Grimshaw 1991, cf. 'functional domain' in LFG; Bresnan 2001).

Principle of lexical indefiniteness

Principle of lexical indefiniteness

A lexical item is [-DEF] if it introduces its referential argument in the universe of a DRS within its ordinary at-issue content.

Because the distribution of [+DEF] and [-DEF] are governed by two independent principles, it can happen that a phrase has both or neither. I suggest that both types of examples are attested.

Agreement feature inheritance principle

Agreement feature inheritance principle

If α is any phrase and β is its head daughter, or (ii) α is a functional category (e.g. DP) and β is its complement daughter, then all of β 's agreement features are agreement features of α .

Because it is syntax that regulates the distribution of [+DEF] above the word level, it can happen that the semantic properties of the phrase as a whole do not match the semantics of the [+DEF] feature.

Framework

• Each syntactic node has a semantic representation.

- Semantic representations are 'representational objects':
 - Discourse referents (type e)
 - Discourse Representation Structures (DRSs; type t) intermediate DRSs, with potentially unresolved presuppositions (van der Sandt 1992)
 - Combinations thereof (e.g. functions, pairs)
- The semantic representation of a branching non-terminal node is typically obtained via β-reduction (Functional Application) from the daughters.
- Each syntactic node has a semantic representation.
- Semantic representations are 'representational objects':
 - Discourse referents (type *e*)
 - Discourse Representation Structures (DRSs; type t) intermediate DRSs, with potentially unresolved presuppositions (van der Sandt 1992)
 - Combinations thereof (e.g. functions, pairs)
- The semantic representation of a branching non-terminal node is typically obtained via β-reduction (Functional Application) from the daughters.

- Each syntactic node has a semantic representation.
- Semantic representations are 'representational objects':
 - Discourse referents (type *e*)
 - Discourse Representation Structures (DRSs; type *t*) *intermediate* DRSs, with potentially unresolved presuppositions (van der Sandt 1992)
 - Combinations thereof (e.g. functions, pairs)
- The semantic representation of a branching non-terminal node is typically obtained via β-reduction (Functional Application) from the daughters.

- Each syntactic node has a semantic representation.
- Semantic representations are 'representational objects':
 - Discourse referents (type *e*)
 - Discourse Representation Structures (DRSs; type *t*) *intermediate* DRSs, with potentially unresolved presuppositions (van der Sandt 1992)

• Combinations thereof (e.g. functions, pairs)

 The semantic representation of a branching non-terminal node is typically obtained via β-reduction (Functional Application) from the daughters.

- Each syntactic node has a semantic representation.
- Semantic representations are 'representational objects':
 - Discourse referents (type *e*)
 - Discourse Representation Structures (DRSs; type *t*) *intermediate* DRSs, with potentially unresolved presuppositions (van der Sandt 1992)
 - Combinations thereof (e.g. functions, pairs)
- The semantic representation of a branching non-terminal node is typically obtained via β-reduction (Functional Application) from the daughters.

- Each syntactic node has a semantic representation.
- Semantic representations are 'representational objects':
 - Discourse referents (type *e*)
 - Discourse Representation Structures (DRSs; type *t*) *intermediate* DRSs, with potentially unresolved presuppositions (van der Sandt 1992)
 - Combinations thereof (e.g. functions, pairs)
- The semantic representation of a branching non-terminal node is typically obtained via β-reduction (Functional Application) from the daughters.

(Intermediate) Discourse Representation Structures

A DRS *K* is a triple $\langle U(K), Con(K), A(K) \rangle$ where:

- U(K), the universe of *K*, is a set of discourse referents
- *Con*(*K*) is a set of conditions, where conditions are sets of states, and states are assignments of individuals to discourse referents (Zeevat 1989)
- *A*(*K*) is possibly empty set of DRSs, those that are presupposed (van der Sandt 1992)

(Intermediate) Discourse Representation Structures

A DRS *K* is a triple (U(K), Con(K), A(K)) where:

- *U*(*K*), the universe of *K*, is a set of discourse referents
- *Con*(*K*) is a set of conditions, where conditions are sets of states, and states are assignments of individuals to discourse referents (Zeevat 1989)
- *A*(*K*) is possibly empty set of DRSs, those that are presupposed (van der Sandt 1992)

(Intermediate) Discourse Representation Structures

A DRS *K* is a triple (U(K), Con(K), A(K)) where:

- *U*(*K*), the universe of *K*, is a set of discourse referents
- *Con*(*K*) is a set of conditions, where conditions are sets of states, and states are assignments of individuals to discourse referents (Zeevat 1989)
- *A*(*K*) is possibly empty set of DRSs, those that are presupposed (van der Sandt 1992)

Notation

Linear notation

Box notation

$[U(K):Con(K) \gg A(K)]$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ Q ○ ○ 35/65

Common nouns and intransitive verbs

- (30) titok/secret_(*et*) $\rightsquigarrow \lambda u.[:SECRET(u)]$
- (31) $vár/wait_{(et)} \rightsquigarrow \lambda u.[:WAIT(u)]$

Box notation: λu .

WAIT(u)

Common nouns and intransitive verbs

- (32) titok/secret_(*et*) $\rightarrow \lambda u$.[:SECRET(u)]
- (33) vár/wait_(et) $\rightarrow \lambda u.[:WAIT(u)]$

Box notation: λu .

WAIT(*u*)

Pronouns

he/she/ő

 $\langle \langle e, t \rangle, t \rangle$

$\lambda p . p(\mathbf{u}) \otimes [: \gg [\mathbf{u}:]]$

- The \otimes symbol represents DRS merge.
- Bold-face indicates that this is a place-holder that will be instantiated as a real discourse referent upon lexical insertion.
- The referential argument **u** must have been introduced. \Rightarrow [+DEF]

Pronouns

he/she/ő

$\lambda p . p(\mathbf{u}) \otimes [: \gg [\mathbf{u}:]]$

- The \otimes symbol represents DRS merge.
- Bold-face indicates that this is a place-holder that will be instantiated as a real discourse referent upon lexical insertion.
- The referential argument **u** must have been introduced. \Rightarrow [+DEF]

 $\langle \langle e, t \rangle, t \rangle$

Pronouns

he/she/ő $\lambda p . p(\mathbf{u}) \otimes [: \gg [\mathbf{u} :]]$

- The \otimes symbol represents DRS merge.
- Bold-face indicates that this is a place-holder that will be instantiated as a real discourse referent upon lexical insertion.
- The referential argument u must have been introduced. ⇒ [+DEF]

 $\langle \langle e, t \rangle, t \rangle$

Pronouns

he/she/ő $\lambda p . p(\mathbf{u}) \otimes [: \gg [\mathbf{u} :]]$

- The \otimes symbol represents DRS merge.
- Bold-face indicates that this is a place-holder that will be instantiated as a real discourse referent upon lexical insertion.
- The referential argument **u** must have been introduced. ⇒ [+DEF]

 $\langle \langle e, t \rangle, t \rangle$

Example

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ≫ < □ ▶ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ > < □ > < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ ≫ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Notation

Linear notation

Box notation

$[:WAIT(u_1) \gg [u_1:]]$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

1st/2nd person pronouns

First and second person non-reflexive pronouns require no antecedent. They can be translated with the 'indexical discourse referent' *i* (Kamp et al. 2011). \Rightarrow [-DEF].

First and second person reflexive and reciprocal pronouns require an antecedent \Rightarrow [+DEF].

Definite descriptions

az/the

 $\langle \langle e,t\rangle, \langle \langle e,t\rangle,t\rangle\rangle$

$\lambda p \cdot \lambda q \cdot q(\mathbf{u}) \otimes [: \gg [\mathbf{u} : \mathbf{u} = \Sigma_{u'}([u':] \otimes p(u'))]]$

- Again, bold-face indicates a place-holder for a discourse referent.
- The sum of all satisifers of the predicate *p* (Kamp & Reyle 1993; Kamp et al. 2011; Yee 2011)
- Existence of **u** is presupposed. \Rightarrow [+DEF]

Definite descriptions

az/the $\langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle$ $\lambda p \cdot \lambda q \cdot q(\mathbf{u}) \otimes [: \gg [\mathbf{u} : \mathbf{u} = \Sigma_{u'}([u':] \otimes p(u'))]]$

- Again, bold-face indicates a place-holder for a discourse referent.
- The sum of all satisifers of the predicate *p* (Kamp & Reyle 1993; Kamp et al. 2011; Yee 2011)
- Existence of **u** is presupposed. \Rightarrow [+DEF]

Definite descriptions

- Again, bold-face indicates a place-holder for a discourse referent.
- The sum of all satisifers of the predicate *p* (Kamp & Reyle 1993; Kamp et al. 2011; Yee 2011)
- Existence of **u** is presupposed. \Rightarrow [+DEF]

Definite descriptions

- Again, bold-face indicates a place-holder for a discourse referent.
- The sum of all satisifers of the predicate *p* (Kamp & Reyle 1993; Kamp et al. 2011; Yee 2011)
- Existence of **u** is presupposed. \Rightarrow [+DEF]

Example

42/65

'Anaphoricity'

Anaphoricity must be understood here in a broad sense, one that includes givenness purely on the basis of world knowledge.

E.g. *The most beautiful woman in the world is coming to my house for dinner tonight* does not require prior introduction of a woman satisfying that description into the discourse.

Roberts's (2003) definition of 'weak familiarity': existence of the entity in question must be entailed by the (local) context of interpretation.

I assume that discourse referents can be found or accommodated for all such entities.

the N as a generalized quantifier??!#?%??

As Löbner (2000) showed, definite descriptions and pronouns behave logically as terms, displaying for example *consistency* and *completeness*.

- consistency: $X + (not-P) \Rightarrow not(X+P)$
- completeness: not- $(X+P) \Rightarrow X + (not-P)$

The only generalized quantifiers that behave this way are principal ultrafilters.

Luckily, definite descriptions are principal ultrafilters here.

Indefinite descriptions

 $\lambda p \cdot \lambda q \cdot [\mathbf{u}:] \otimes p(\mathbf{u}) \otimes q(\mathbf{u})$

• Existence is asserted. \Rightarrow [-DEF]

Indefinite descriptions

• Existence is asserted. \Rightarrow [-DEF]

Example

minden 'every' and valamennyi 'each'

- (34) Eltitkol-om valamennyi találkozás-t keep.secret-1SG.DEF each meeting-ACC 'I keep each meeting secret.'
- (35) Eltitkol-ok minden találkozás-t keep.secret-1SG.IND every meeting-ACC 'I keep every meeting secret.'

Lexical entries (cf. Muskens 1996)

minden/every

$$\lambda p \cdot \lambda q \cdot [: ([\mathbf{u}:] \otimes p(\mathbf{u})) \rightarrow q(\mathbf{u})]$$

valamennyi/each

$$\langle et, \langle et, t \rangle \rangle$$

 $\langle et, \langle et, t \rangle \rangle$

$$\lambda p \cdot \lambda q \cdot [: [\mathbf{u} : \mathbf{u} \in \mathbf{y}] \rightarrow q(\mathbf{u}) \gg [\mathbf{y} : \mathbf{y} = \Sigma_{y'}([y' :] \otimes p(y'))]]$$

• The referential argument is part of a contextually given plural entity. ⇒ [+DEF]

Lexical entries (cf. Muskens 1996)

minden/every

$$\lambda p \cdot \lambda q \cdot [: ([\mathbf{u}:] \otimes p(\mathbf{u})) \rightarrow q(\mathbf{u})]$$

valamennyi/each

$$\langle et, \langle et, t \rangle \rangle$$

 $\langle et, \langle et, t \rangle \rangle$

 $\lambda p \cdot \lambda q \cdot [: [\mathbf{u} : \mathbf{u} \in \mathbf{y}] \to q(\mathbf{u}) \gg [\mathbf{y} : \mathbf{y} = \Sigma_{y'}([y' :] \otimes p(y'))]]$

• The referential argument is part of a contextually given plural entity. ⇒ [+DEF]

Empty domain effects

Empty domain effects:

(36) #Every negative number greater than 5 is prime.

I agree with Lappin & Reinhart (1988) and Geurts (2007) that these arise through Gricean reasoning.

Thus, while *every* phrases are typically used when speakers presuppose a non-empty domain, this presupposition is not part of the lexical meaning of *every*, so *minden* 'every' does not bear the [+DEF] feature.

Those pesky possessives

- (37) Ismer-em minden titk-od-at. know-1SG.DEF every secret-2SG.POSS-ACC 'I know your every secret.'
- (38) Ismer-em/Ismer-ek néhány titk-od-at. know-1SG.DEF/know-1SG.IND some secret-2SG-ACC 'I know some secrets of yours'
- (39) Lát-om/Lát-ok valaki-d-et. see-1SG.DEF/see-1SG.IND someone-2SG-ACC 'I see someone of yours'

Inspiration: van der Sandt (1992)

(40) John's cat purrs.

```
PURR(y)
 _y___
 \overline{CAT(y)}
POSS(x,y)
  х
JOHN(x)
```

Possessives in Hungarian (singular possessor)

Singular possessum	Plural possessum
az (én) kalap-om	az (én) kalap-ja-i-m
the I hat-POSS.1SG	the I hat-POSS-PL-1SG
'my hat'	'my hats'
a (te) kalap-od	a (te) kalap-ja-i-d
the you hat-POSS.2SG	the you hat-POSS-PL-2SG
'your hat'	'your hats'
az (ő) kalap-ja	az (ő) kalap-ja-i
the he/she hat-POSS.3SG	the he/she hat-POSS-PL.3SG
'his/her hat'	'his/her hats'

Possessives in Hungarian (plural possesor)

Singular possessum	Plural possessum
a (mi) kalap-unk	a (mi) kalap- <mark>ja</mark> -i-nk
the we hat-POSS.1PL	the we hat-POSS-PL-1PL
'our hat'	'our hats'
a (ti) kalap-otok	a (ti) kalap-ja-i-tok
the you hat-2PL	the 2PL hat-POSS-PL-2PL
'your (PL) hat'	'you hats'
az (ő) kalap-j-uk	az (ő) kalap-ja-i-k
the he/she hat-POSS-PL	the he/she hat-POSS-PL-3PL
'their hat'	'their hats'
Possessives in Hungarian (lexical possessor)

Singular possessum	Plural possessum	
(a) Mari kalap-ja	(a) Mari kalap- <mark>ja</mark> -i	
the Mary hat-POSS	the Mary hat-POSS-PL	
'Mary's hat.'	'Mary's hats.'	
(*az) a fiú-k kalap-ja	(*az) a fiú-k kalap- <mark>ja</mark> -i	
the the boy-PL hat-POSS	the the boy-PL hat-POSS-PL	
'the boys' hat.'	'the boys' hats.'	

Possessive semantics

-ja 'POSS' →

$\langle \langle e, \langle e, t \rangle \rangle, \langle e, \langle e, t \rangle \rangle \rangle$

$\lambda R_{\langle e, \langle e, t \rangle \rangle} \cdot \lambda x \cdot \lambda y \cdot [:\gg [y : R(x, y)]]$

Relational nouns and type-shifted sortal nouns

Relational nouns and type-shifted sortal nouns

macska	'cat'	~>
--------	-------	----

 $\lambda x . \lambda y . CAT(y) \land POSS(x,y)$

56/65

 $\langle e, \langle e, t \rangle \rangle$

57/65

Semantic representation

Semantic representation

(41) Minden titk-á-t ismer-em every secret-POSS.3SG-ACC know-1SG.DEF 'I know every secret of his'

Definiteness of quantified possessives

Upshot: The referential argument is lexically specified as anaphoric by the possessive suffix, so the phrase is [+DEF].

Possessives with indefinite quantifiers

As this predicts, there is variation and angst in the judgments about the subjective vs. objective conjugation in this case.

Oblique partitives and numerals

(42) A regény-ek közül Péter elolvas-ott négy-et the novel-PL from_among Peter read-3SG.PST.IND four-ACC 'Among the novels, Peter read four.'

$four_{\langle et, \langle et, t \rangle \rangle} \rightsquigarrow$

 $\lambda p \cdot \lambda q \cdot [\mathbf{u} : |\mathbf{u}| = 4] \otimes p(\mathbf{u}) \otimes q(\mathbf{u})$

If *four* is the head of the phrase, then the phrase will have the feature [-DEF].

Evidence that *four* is the head: splitting between PP and numeral.

Conclusion

Outline

2 Proposal

Conclusion

Hungarian is almost like Turkish

- Like Turkish accusative-marking (Enç 1991; Özge 2012), the Hungarian objective conjugation requires D-linking.
- But in Hungarian, the process is mediated by a syntactic feature whose only source is lexical.
 - Phrasally but not lexically D-linked: *Every*-phrases, oblique partitive phrases and specific indefinites.
 - These are accusative-marked in Turkish, but do not trigger the objective conjugation in Hungarian.

References

Bartos, Huba. 2001. Object agreement in Hungarian: A case for Minimalism. In Galina M. Alexandrova & Olga Arnaudova (eds.), *The Minimalist Parameter: Selected papers from the Open Linguistics Forum, Ottawa*, 21-23 *March* 1997, 311–24. Amsterdam: John Benjamins.

Bresnan, Joan. 2001. Lexical-functional syntax. Malden, MA: Blackwell.

- Coppock, Elizabeth & Stephen Wechsler. 2012. The objective conjugation in Hungarian: Agreement without phi-features. *Natural Language and Linguistic Theory (Published online March 8, 2012)*.
- É. Kiss, Katalin. 2000. The Hungarian noun phrase is like the English noun phrase. In Gábor Alberti & István Kenesei (eds.), *Papers from the Pécs conference*, vol. 7 Approaches to Hungarian, 121–49. Szeged: JATE Press.
- É. Kiss, Katalin. 2002. *The syntax of Hungarian*. Cambridge: Cambridge University Press.

Enç, Müvet. 1991. The semantics of specificity. Linguistic Inquiry 22. 1–25.

- Farkas, Donka. 2002. Specificity distinctions. *Journal of Semantics* 19(3). 213–43.
- Gerland, Doris & Albert Ortmann. 2009. Alienability splits in Hungarian. Paper presented at 'Verbal and Nominal Possession' workshop, January 29, 2009.
- Geurts, Bart. 2007. Extential import. In Ileana Comorovski & Klaus von Heusinger (eds.), *Existence: Semantics and syntax*, 253–71. Dordrecht:

୬ ୯ ୯ 65/65

References

Springer.

Grimshaw, Jane. 1991. Extended projection. Ms., Brandeis University, Waltham, Mass.

Kamp, Hans, Josef van Genabith & Uwe Reyle. 2011. Discourse representation theory. In Dov M. Gabbay & Franz Guenthner (eds.), *Handbook of philosophical logic*, vol. 15, 125–394. Dordrecht: Springer.

- Kamp, Hans & Uwe Reyle. 1993. *From discourse to logic*. Dordrecht: Kluwer Academic Publishers.
- Lappin, Shalom & Tanya Reinhart. 1988. Presuppositional effects of strong determiners: A processing account. *Linguistics* 26. 1021–37.
- Löbner, Sebastian. 2000. Polarity in natural language: Predication, quantification and negation in particular and characterizing sentences. *Linguistics and Philosophy* 23. 213–308.
- Muskens, Reinhard. 1996. Combining Montague semantics and discourse representation. *Linguistics and Philosophy* 19. 143–186.

Özge, Umut. 2012. On the "strength" of indefinites: A view from Turkish.

Talk presented at Heinrich Heine University, Feburary 9, 2012.

- Roberts, Craige. 2003. Uniqueness in definite noun phrases. *Linguistics and Philosophy* 26. 287–350.
- Szabolcsi, Anna. 1994. The noun phrase. In Ferenc Kiefer & Katalin É. Kiss (eds.), The syntactic structure of Hungarian, vol. 27, 179–274. New York: 👳

Conclusion

Academic Press.

van der Sandt, Rob A. 1992. Presupposition projection as anaphora resolution. *Journal of Semantics* 9. 333–377.

- Yee, Charles Woie-Jye. 2011. *A lexical approach to presupposition and meaning*: Universität Stuttgart dissertation.
- Zeevat, Henk. 1989. A compositional approach to discourse representation theory. *Linguistics and Philosophy* 12(1). 95–131.