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The concept of reduction is central to the philosophy of science and to science itself.
Intuitively speaking, a branch of science or a scientific theory is said to reduce to an-
other branch of science or scientific theory when the ideas, ontology, laws and predic-
tions of one are accounted in some way by the other. In this talk, we provide a frame-
theoretic account of the concept of reduction. We first reconstruct the classical concep-
tion of reduction in frame-theoretic terms. This renders reduction as a sort of mapping
relation between frames. We then consider a number of objections raised against the
classical conception as well as proposed solutions. It is argued that although some pro-
gress has been made with neo-classical conceptions of reduction, various problems
remain unsolved. We end the paper by proposing further modifications to the neo-
classical accounts, modeling such modifications in frame-theoretic terms.

The classical conception of reduction goes back to Nagel (1961). According to this
conception, a theory T reduces to a theory T' if, and only if, two conditions are met: (i)
connectability: for every term F in T, there is a term G that is constructible in T such
that for any object a, Fa if, and only if, Ga and (ii) derivability: T is derivable from T,
potentially bridge laws B and potentially restrictive conditions A. Nagel identified two
types of reduction: homogenous and heterogeneous. In homogeneous reductions the
reduced theory’s vocabulary is either included in, or at least can be defined in terms of,
the reducing theory’s vocabulary. A frequently cited example is the reduction of Gali-
leo’s law of free fall to Newtonian physics. Since the former assumes that acceleration
Is constant at or near the Earth’s surface while the latter takes it to be proportional to
the force acting on the given body, a restrictive condition is required for the derivation.
This takes the form of the constant g, which denotes the ‘average’ acceleration impart-
ed on objects with small mass by the Earth’s local gravitational field. Heterogeneous
reductions require bridge laws to meet the connectability condition. Bridge laws con-
nect the vocabulary of the reduced and reducing theories so that derivability can be
achieved. In other words, bridge laws come into play only in heterogeneous reduc-
tions. A frequently cited example is the reduction of the second law of thermodynam-
ics to statistical mechanics. The required bridge law connects temperature (a concept
in thermodynamics) with mean kinetic energy (a concept in statistical mechanics).

A number of objections have been raised against the classical conception of reduc-
tion. One concerns the derivability requirement. Feyerabend (1962) points out that in
the great majority of cases in actual science this requirement cannot be met because
the reduced theory and the reducing theory are inconsistent. Another problem with the
classical conception concerns the variance of meaning across theories. Thus although
the concept mass appears in both classical mechanics and the special theory of relativi-
ty they do not mean exactly the same thing. In the latter mass is not an invariant quan-
tity but increases as the velocity of an object nears that of the velocity of light.

Solutions to these and other objections are discussed in various places. Dizadji-
Bahmani et al. (2010) argue that a neo-classical account of reduction modeled on
Schaffner (see, for example, his 1967) offers the best hope to address most of these
objections. Schaffner’s innovation is to point out that what gets reduced is not the orig-
inal theory T but a corrected version T* that is strongly analogous to T. Thus, contra
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Feyerabend, it can be argued that derivability is maintained, even though what gets
derived from T' is T*, not T. Two crucial modifications to Schaffner’s model that
Dizadji-Bahmani et al. make are that: (1) it is not necessary that every term of the re-
duced theory be connected to a term of the reducing theory and (2) it is not necessary
that a term of the reduced theory be connected to exactly one term of the reducing the-
ory. The first allows the modeling of partial reductions, while the second allows the
modeling of multiple realisability.

We support the liberalisation of the notion of reduction carried out by Dizadji-
Bahmani et al. and proceed to liberalise the notion further. We first motivate the move
from T to T* by arguing that it is natural for T and T' to be inconsistent in cases of pro-
gress. After all, a successor theory T' which allows more precise calculations of a giv-
en quantity necessarily conflicts with the calculations of its predecessor T. We then
argue that this inconsistency can be produced by differences in the reduced and reduc-
ing theories beyond those mentioned in (1) and (2). For example, we posit that it is not
even necessary that every term of T' be connected to a term of T or T* since T' may
have additional terms in its vocabulary. A case in point is the so-called Lorentz term y
in the special theory of relativity’s conception of momentum. Although the classical
conception of momentum and the relativistic one are both defined as a function of
mass and velocity, the latter (which, by the way, is the reducing theory) states that it is
also a function of . We also argue that the notion of ‘being strongly analogous’ needs
to be put on a firmer footing. For example, given that some reductions turn out to be
partial, in such cases T* needs to be strongly analogous to only part of T. We model
this and other proposed modifications to the classical conception of reduction in terms
of mappings between frames. To give a rough account, reduction can be achieved so
long as: (a) there is a bijective mapping between part of the structure of the frame of T'
and the whole structure of the frame of T* and (b) there is a transformation function
from the frame of T to the frame of T* that keeps at least some of the defining features
of the former intact (e.g. by preserving some of its value-value, attribute-attribute or
value-attribute constraints).
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