## Introduction to Tree Adjoining Grammar XTAG-Analyses of Syntactic Phenomena

#### Timm Lichte

DGfS-CL Fall School 2011

2 week, 2 session

06.09.2011





## Outline

### 🕦 The XTAG-grammar

### 2 Complementation

- NP- and PP-complements
- Sentential complements
  - Control
  - Raising
  - Small clauses
- 3 Extraction
  - Unbounded dependency
  - Islands for extraction
  - Subject-auxiliary inversion
  - Relative clauses



3

URL: http://www.cis.upenn.edu/~xtag/ Manual: [XTAG Research Group, 2001]

# The architecture of the XTAG-grammar



inflected form  $\rightarrow$  root form, POS, inflectional information

root form, POS  $\rightarrow$  list of tree templates or tree families, list of feature equations

list of tree templates and tree families

Example: **Tree template** for the declarative transitive verb  $(\alpha n \times 0 \vee n \times 1)$ , where  $\diamond$  marks the lexical insertion site:



# The architecture of the XTAG-grammar



inflected form  $\rightarrow$  root form, POS, inflectional information

root form,  $\text{POS} \rightarrow \text{list}$  of tree templates or tree families, list of feature equations

list of tree templates and tree families

### A tree family

- is a set of tree templates,
- represents a subcategorization frame, and
- unifies all syntactic configurations the subcategorization frame can be realized in.

Example:  $\alpha nx0Vnx1 \in Tnx0Vnx1$ 

# The architecture of the XTAG-grammar - Counts

| subcategorization frame           | # tree fam. | # tree temp. |
|-----------------------------------|-------------|--------------|
| intransitive                      | 1           | 12           |
| transitive                        | 1           | 39           |
| adjectival complement             | 1           | 11           |
| ditransitive                      | 1           | 46           |
| prepositional complement          | 4           | 182          |
| verb particle constructions       | 3           | 100          |
| light verb constructions          | 2           | 53           |
| sentential complement (full verb) | 3           | 75           |
| sentential subject (full verb)    | 4           | 14           |
| idioms (full verb)                | 8           | 156          |
| small clauses/predicative         | 20          | 187          |
| equational 'be'                   | 1           | 2            |
| ergative                          | 1           | 12           |
| resultatives                      | 4           | 101          |
| it clefts                         | 3           | 18           |
| tota                              | 57          | 1008         |

(from [Prolo, 2002])

#### Lexical insertion

Drawing an edge between the lexical anchor and the lexical insertion site

- prior to substitution and adjunction
- The feature structures of the **lexical anchor** and the **insertion site** unify.



### The XTAG-grammar

#### 2 Complementation

- NP- and PP-complements
- Sentential complements
  - Control
  - Raising
  - Small clauses

### 3 Extraction

- Unbounded dependency
- Islands for extraction
- Subject-auxiliary inversion
- Relative clauses

## Complementation with NPs and PPs: The base cases

**Complementation with NPs:** 



Complementation with PPs: substitution or co-anchor



### Case assignment and subject-verb agreement

Two modes of case assignment in tree templates:

- $\bullet\,$  Direct case assignment with  ${\rm case}\,$
- $\bullet$  Indirect case assignment with  $\operatorname{assign-case}$ 
  - $\Rightarrow$  by the lexical anchor (during lexical insertion) or by adjoining trees



### Case assignment and subject-verb agreement



### Case assignment and subject-verb agreement



In XTAG, a distinction is drawn between sentential complements with (1) finite verbs, sentential complements with (2) to-infinitives, and (3) small clauses.

(1) a. Kim said [that Sandy left]. (finitive)
b. Dana preferred [for Pat to get the job]. (to-infinitive)
c. Leslie wanted [Chris to go].
d. Lee believed [Dominique to have made a mistake].
e. René tried [PRO to win].
f. [Kims] seems [to be happy].
g. Tracy proved [the theorem false]. (small clauses)
h. Bo considered [Lou a friend].
i. Gerry expects [those children off the ship]
(from [Pollard and Sag, 1994])

# To-infinitives: Controlling and Raising its subject

XTAG assumes different syntactic structures/derivations for superficially very similar sentences:

(2) a. John tries [PRO to leave].b. [John] seems [to leave].

### Why is that?

XTAG adopts the **projection principle** from GB [Chomsky, 1981], according to which "meaning maps transparently into syntactic structure" [Culicover and Jackendoff, 2005, 47], such that the following equivalence relation holds:

 $\mathsf{Complement} \text{ of the verb} \Longleftrightarrow \mathsf{Argument} \text{ of the predicate}$ 

14

 $\Rightarrow \theta$ -criterion for TAG from [Frank, 2002]

# To-infinitives: Controlling and Raising its subject

Complement of the verb  $\iff$  Argument of the predicate

- (3) John tries to leave. tries(John, leave(John))
- $\Rightarrow$  John is the complement of both tries and to leave.
- $\Rightarrow$  Empty element (PRO) is used to avoid complement sharing.
- $\Rightarrow$  PRO needs to be ''controlled''.
- $\Rightarrow$  Control
- (4) John seems to leave.

seems(leave(John))

- $\Rightarrow$  John is not the complement of seems.
- $\Rightarrow$  Argumenthood is the primary syntactic factor, not agreement!

- $\Rightarrow$  An alien complement looks like a regular complement.
- $\Rightarrow \textbf{Raising}$

## Raise or control?



• Classfication game:

- (5) a. They asked Jan to leave.
  - b. Bo turns out to be obnoxious.
  - c. Sandy is willing to go to the movies.
  - d. Terry was expected to win the prize.
  - e. Kim believed a unicorn to be approaching.

16

(object control) (subject raising) (subject control) (subject raising) (object control)



• Classfication game:

- (6) a. It is important for Bill to dance.
  - b. Christy left the party early to go to the airport.
  - c. Peter kept standing in the doorway.

Control verbs establish the coreference between their subject/object and the unexpressed subject (PRO) of their sentential complement. (PRO control)

(7) a. John tried [PRO to leave]. (subject control)
b. John persuaded him [PRO to leave]. (object control)
c. \*There tries [PRO to be disorder after a revolution].

18

 $\Rightarrow$  Control verbs assign semantic role to the controller!

### Control verbs - XTAG-Analysis

- control feature for coindexation
- PRO tree or PRO as coanchor of the verb



Raising verbs determine case and agreement properties of the subject complement of the (non-finite) sentential complement. Since the "raised" constituent is no immediate part of the argument structure of the raising verb, this is called **Exceptional Case Marking (ECM)**.

(8) a. [John] seems [to leave]. (subject raising)
b. Sue expects [him to leave]. (object raising)
c. [There] seems [to be disorder after a revolution].
d. John expected [it to rain].

- $\Rightarrow$  allow for expletive pronouns (*it/there*)
- (9) John seems unhappy.\*John tries unhappy.
- $\Rightarrow$  allow for small clauses

Raising verbs - XTAG-Analysis (1)

no PRO

- The "raised" constituent is still part of the to-infinitive!
- ECM via assign-case feature



Example for object raising:

(10) We expect him to leave.



#### Question:

What complements does the verb *consider* take?

- (11) a. We consider [Kim to be an acceptable candidate].
  - b. We consider [Kim an acceptable candidate].
  - c. We consider [Kim quite acceptable].
  - d. We consider [Kim among the most acceptable candidates].

23

e. \*We consider [Kim as an acceptable candidate].

Similar verbs: prove, expect, rate, count, want

- One sentential complement (small clause), where to be can be omitted
- A noun and a predicative phrase

#### Pro:

- Homomorphism between argument structure and complement structure (in GB: Projection Principle, UTAH; in TAG: θ-Criterion)
- Uniformity of the subcategorized constituents:

Instead of NP, AP, PP, IP/S, ... as possible categories of the complements, there is only one complement category.

# Small clauses - Pro and contra (2)

### Contra:

- Passivization (object-to-subject shift)
  - (12) We considered [Kim quite acceptable]. Kim was considered [\_\_\_\_ quite acceptable].
- Idiosyncratic restrictions on the predicative phrase
  - (13) a. I consider/\*expect [this Island a good vacation spot].
    - b. I consider/\*expect [this man stupid].
       I expect [that man to be stupid].
    - c. We rate/\*consider [Kim as quite acceptable]
- ⇒ The verb should be indifferent to the categorial status of the small clause predicate!

# Small clauses - XTAG-Analysis (1)



Small clauses have the structure of regular sentences , except that the verb is missing.

⇒ The superordinate verb is represented as auxiliary tree that adjoins at VP or S.

Small clauses - XTAG-Analysis (2)

(14) We consider Kim acceptable.



# Small clauses - XTAG-Analysis (3)

(15) Kim seems acceptable.



- $\Rightarrow$  seems adjoins to VP
- $\Rightarrow$  ECM for nominative case

| control verbs                 | raising verbs                  |  |
|-------------------------------|--------------------------------|--|
| assign semantic role          | assign <u>no</u> semantic role |  |
| (to the controlled subject)   | (to the raised subject)        |  |
| PRO                           | no PRO                         |  |
| (incomplete sent. complement) | (complete sent. complement)    |  |
| assign <u>no</u> case         | assign case via ECM            |  |
| (to the controlled subject)   | (to the raised subject)        |  |
| no small clauses              | small clauses                  |  |
| XTAG: adjoin to S             | XTAG: adjoin to S or VP        |  |

# Outline

The XTAG-grammar

### 2 Complementation

- NP- and PP-complements
- Sentential complements
  - Control
  - Raising
  - Small clauses



Extraction

- Unbounded dependency
- Islands for extraction
- Subject-auxiliary inversion
- Relative clauses

#### The movement metaphor:

- Relating syntactic configurations in a derivational hierarchy.
- **Traces** and **coindexation** are used to express derivational subordination.

### Topicalization / Extraction:

Placing a post-verbal constituent into a sentence-initial position.

- (16) a. Sandy loves Kim.
  - b. Kim<sub>i</sub>, Sandy loves \_\_\_i.
  - c. On Kim<sub>i</sub>, Sandy depends \_\_\_i .

(base configuration)

(NP-topicalization)

(PP-topicalization)

#### Wh-Extraction:

Placing a constituent as wh-phrase into a clause-initial position.



Extraction - Tree templates



Extraction - Tree templates



#### Unbounded dependency:

The dependency between an extracted constituent and its trace may extend **across arbitrarily many clause boundaries**.

- (18) a.  $Kim_i$ , Sandy loves \_\_\_\_ .
  - b. Kim<sub>i</sub>, Chris knows [Sandy loves \_\_\_\_].
  - c. Kim<sub>i</sub>, Dana believes [Chris knows [Sandy loves \_\_j]].
- (19) a. I wonder [who; Sandy loves \_\_\_].
  - b. I wonder [who; Chris knows [Sandy loves \_\_\_]].
  - c. I wonder [who; Dana believes Chris knows [Sandy loves \_\_\_\_i]].

### Unbounded dependency - XTAG-analysis (outline)

(20) Kim<sub>i</sub>, Dana believes [Chris knows [Sandy loves \_\_i]].



 $\Rightarrow$  extended domain of locality and factoring of recursion (recursive adjunction)

### Adjuncts:

(21) \*[Which movie]; did Gorgette fall asleep [after watching \_\_\_\_].

 $\Rightarrow$  No such elementary tree for the adjunct!

### Coordination

(22) \*Who; did Sandy love [\_\_; and Kim].

 $\Rightarrow$  No such elementary trees for the coordinated NP and for the governing verb!

### Islands for extraction

- Finite sentences with complementizer (subject extraction) (In GB: Empty Category Principle/Subjacency):
  - (23) \*Who; did Alice say [that \_\_; left]. Who; did Alice say [\_; left].

 $\Rightarrow$  No such elementary trees!

#### • Finite sentences with complementizer (object extraction)

(24) \*Who; did the elephant whisper [that the emu saw \_\_\_\_; ? Who; did the elephant say [that the emu saw \_\_\_; ?

38

 $\Rightarrow$  Filtering by features: comp = nil, where non-bride verbs attach (*whisper*) comp = nil/that, where bridge verbs attach (*say*)

# Subject-auxiliary inversion

#### Subject-auxiliary inversion

The auxiliary verb ('do', 'have', 'be', 'can', ...) precedes the subject.

- No subject-auxiliary inversion in embedded wh-questions:
  - (25) a. I wonder [what; John reads \_\_\_\_\_].
    - b. \*I wonder [what; **does** John read \_\_\_\_j].
- Obligatory subject-auxiliary inversion in direct questions with object extraction:
  - (26) a. What; does John read \_\_;?
     b. \*What; John does read \_\_;?
     c. \*What; John reads \_\_;?
    - c. \*What; John reads \_\_;?
- No subject-auxiliary inversion in topicalization:

Subject-auxiliary inversion - XTAG-analysis (1)

#### Features for extraction:

• extracted :=  $\{+,-\}$ 

 $\Rightarrow$  to indicate extraction in the S-node

• wh := 
$$\{+,-\}$$

 $\Rightarrow$  to indicate the presence of a wh-pronoun

• inv :=  $\{+,-\}$ 

 $\Rightarrow$  to indicate inversion

• invlink :=  $\{+,-\}$ 

 $\Rightarrow$  to link wh und inv via the **root restriction** 

# Subject-auxiliary inversion - XTAG-analysis (2)

Tree template for object extraction (simplified):



# Subject-auxiliary inversion - XTAG-analysis (3)

Elementary tree object extraction (even more simplified):



# Subject-auxiliary inversion - XTAG-analysis (4)

**No subject-auxiliary inversion** in embedded wh-questions:  $\Rightarrow$  sentential complement with wh = +, inv = - in the root node

(28) I wonder [who; people love \_\_\_\_\_].



## Subject-auxiliary inversion - XTAG-analysis (5)

**Obligatory subject-auxiliary inversion** in direct questions:

 $\Rightarrow$  In the root node: wh = +, inv = +



XTAG-Analyses of Syntactic Phenomena

# Subject-auxiliary inversion - XTAG-analysis (7)

#### Problem:

How to impose that wh = inv in non-embedded sentences?

#### Root restriction

"A restriction is imposed on the **final root node** of any XTAG derivation of a tensed sentence which equates the wh feature and the invlink feature of the final root node." [XTAG Research Group, 2001, 298]

#### Effects:

- Only in non-embedded object extractions the wh-pronoun depends on inversion and vice versa.
- The same tree can be used for embedded and non-embedded object extraction.