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Introduction

Role and Reference Grammar (RRG; Van Valin & LaPolla 1997; Van
Valin 2005) is a typologically rich grammar theory.

Ex. from TagalogRP
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NUC

laruan
the toy

na
that

PERIPHERY

CLAUSE

CORE

RPNUC
binili

bought

RP

CORE

NUC
ng bata
the child

But: not fully formalized, no implementation framework.
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Introduction

The architecture of Role & Reference Grammar (RRG)

Linking
algorithm

Syntactic representation

Semantic representation

Constructional
schemas

Syntactic
inventory

Lexicon

D
iscourse-pragm

atics

[do′(x,∅)] CAUSE [INGR shattered′(y)]

〈IF INT 〈TNS PRES 〈ASP PERF PROG 〈do′(Kim, [cry′(Kim)]〉〉〉〉
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LDP
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V

PRED

NUCL

CORE

CLAUSE

SENTENCE

PP
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PERIPHERY

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

MORPHOLOGY —
SYNTAX Juncture: nuclear

Nexus: cosubordination
Construction:

RP

NUCL1

RP

NUCL2

NUCL

CORE

Linking: default
SEMANTICS [SEMNUCL1 ] CAUSE [SEMNUCL2 ]
PRAGMATICS unspecified
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Introduction

Why is a formal perspective on RRG useful (and for whom)?

Is a formalization relevant for the working typologist?

Maybe not, but it can help to eliminate inconsistencies and
gaps of the theory.

Doesn’t RRG already come with a lot of formal elements?

Sure, but these elements are not defined with logical and
mathematical rigor.

Further advantages:

A formalization can serve as a basis (in fact, is a requirement)
for a computational treatment of RRG.
It allows us to study the generative power of RRG and the
complexity issues related to processing RRG-based grammars.
Moreover, the formalization should make it easier to extend
and modify the theory.
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Introduction

General plan of the formalization

Take all explanatory components of RRG into account.

Develop a declarative, constraint-based formulation.

Some of the tasks

Syntactic representation
Formal specification of the syntactic inventory and of the
compositional operations on trees

Semantic representation
Clarification of the logical (and model-theoretic) aspects of
RRG’s logical structures

Linking algorithm
Non-procedural, inherently bidirectional description as a system
of constraints
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Syntactic representation

The inventory of syntactic templates

CLAUSE

PrCS CORE

  CORE<        PERIPHERY

NUCNP PP

PRED

PPV

Syntactic inventory

CLAUSELDP

SENTENCE

SENTENCE

LDP CLAUSE

 CORE<        PERIPHERY   PrCS

PRED

VADV NP
PP

NUCNP PP

(e.g. Yesterday,   what  did   Robin   show   to Pat     in the library?)

[Van Valin 2005, p. 15]

Issues
How are syntactic
templates defined?
How do they
combine?

Proposal
Use concepts from
(Lexicalized) Tree
Adjoining Grammars
(LTAG)
Adapt the LTAG
formalism to the
syntactic dimension
of RRG
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Background: LTAG

Lexicalized Tree Adjoining Grammars (LTAG)

Tree-rewriting system

Finite set of (lexicalized) elementary trees.

Two operations: substitution (replacing a leaf with a new tree)
and adjunction (replacing an internal node with a new tree).

NP

‘Adam’

S

VP

NPV

‘ate’

NP

NP

‘an apple’

VP

VP∗Adv

‘always’

 

S

VP

VP

NP

‘an apple’

V

‘ate’

Adv

‘always’

NP

‘Adam’
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Background: LTAG

Two key properties of the LTAG formalism

Extended domain of locality

The full argument projection of a lexical item can be represented
by a single elementary tree.

Elementary trees can have a complex constituent structure.

Factoring recursion from the domain of dependencies

Constructions related to iteration and recursion are modeled by
adjunction.

Through adjunction, the local dependencies encoded by elementary
trees can become long-distance dependencies in the derived
trees.

Slogan: “Complicate locally, simplify globally” [Bangalore/Joshi 2010]
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Background: LTAG

“Simplify globally”

The composition of elementary trees can be expressed by two
general operations: substitution and adjunction.

(Since basically all linguistic constraints are specified over the
local domains represented by elementary trees.)

“Complicate locally”

Elementary trees can have complex semantic representations
which are not necessarily derived compositionally (in the syntax)
from smaller parts of the trees.

In particular, there is no need to reproduce the internal structure
of an elementary syntactic tree within its associated semantic
representation. [Kallmeyer/Joshi 2003]
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Background: LTAG

Tree families

Unanchored elementary trees are organized in tree families, which
capture variations in the (syntactic) subcategorization frames.

Example unanchored family for transitive verbs

S

NP VP

V◇ NP

S

NP S

NP VP

ε V◇ NP

S

NP VP

V◇ PP

P NP

by

S

NP S

NP VP

ε V◇ PP

P NP

by

S

NP S

NP VP

V◇ NP

ε

. . .

Metagrammar
Modular characterization of elementary trees by a system of
tree descriptions.

11 / 62



Background: LTAG

Tree families

Unanchored elementary trees are organized in tree families, which
capture variations in the (syntactic) subcategorization frames.

Example unanchored family for transitive verbs

S

NP VP

V◇ NP

S

NP S

NP VP

ε V◇ NP

S

NP VP

V◇ PP

P NP

by

S

NP S

NP VP

ε V◇ PP

P NP

by

S

NP S

NP VP

V◇ NP

ε

. . .

Metagrammar
Modular characterization of elementary trees by a system of
tree descriptions.

11 / 62



Background: LTAG

Decomposition/factorization in the metagrammar

Class CanSubj

S

NP ≺ VP

V◇

Class ExtrSubj

S

NP[wh=yes]
≺
∗ S

NP ≺ VP

ε V◇

Class Subj

CanSubj ∨ ExtSubj

Class DirObj

VP

V◇ ≺∗ NP

Class ByObj

VP[voice=passive]

V◇ ≺
∗ PP

P ≺ NP

by

Class ActV

VP[voice=active]

V◇

Class PassV

VP[voice=passive]

V◇
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Background: LTAG

Decomposition/factorization in the metagrammar

metagrammar classes

compilation

unanchored tree families lexical entries

lexical selection

LTAG

Advantage
The metagrammar allows one to express and implement lexical
and constructional generalizations.
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Syntactic representation

Syntactic templates in RRG

CORE

RP NUC

PRED

V

CORE PERIPHERY

ADV

SENTENCE

CLAUSE

CLAUSE

PrCS CORE

PrCS

RP

SENTENCE

CLAUSE

PrCS CORE PERIPHERY

NUC

RP RP PRED

V ADV

what did Kim smash yesterday

TNS CLAUSE
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Syntactic representation

Modified representation

SENTENCE

CLAUSE

PrCS CORE PERIPHERY

NUC

RP RP PRED

V ADV

what did Kim smash yesterday

TNS CLAUSE

 
SENTENCE

CLAUSE

PrCS CORE

TNS[OP+] NUC

RP RP PRED ADV[PERI+]

V

what did Kim smash yesterday
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Syntactic representation

Application of the LTAG formalism to RRG

What are the elementary trees of RRG?
What are their modes of composition?
How can they be characterized as minimal models of
metagrammatical specifications?

Possible candidates for elementary trees in RRG

Basic predication templates and their variants, e.g.

CLAUSE

CORE

RP NUC RP

V[PRED+]

CLAUSE

CORE

RP NUC

AUX V[PRED+]

CLAUSE

CORE

RP NUC

AUX V[PRED+]

PP[PERI +]

P

by

RP

CLAUSE

PrCS CORE

RP RP NUC

V[PRED+]

Constructional schemas (strictly speaking, their syntactic dimension)
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Syntactic representation

Metagrammar sketches

core-spine

CORE

NUC

V[PRED +]

core-clause

CLAUSE

CORE

precore-slot

CLAUSE

PrCS ≺ CORE

prenuc-rp

CORE

RP ≺ NUC

postnuc-rp

CORE

NUC ≺ RP

clause-spine :=
core-spine ∧ core-clause

CLAUSE

CORE

NUC

V[PRED +]

base-transitive :=
clause-spine ∧ prenuc-rp ∧ postnuc-rp

CLAUSE

CORE

RP ≺ NUC ≺ RP

V[PRED +]
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Syntactic composition

Mode of composition I: (simple) substitution

SENTENCE

CLAUSE

CLAUSE

CORE

RP NUC RP

V[PRED+]

RP

Nprop

Kim
V[PRED+]

smashed

RP

DEF[OP+] CORER

NUCR

N

the glass

SENTENCE

CLAUSE

CLAUSE

CORE CLAUSE

RP NUC

V[PRED+]

John thinks

CLAUSE

CORE

RP NUC RP

V[PRED+]

Kim smashed the glass
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Syntactic composition

Mode of composition II: (sister) adjunction

SENTENCE

CLAUSE

PrCS CORE

TNS[OP+] NUC

RP RP PRED ADV[PERI+]

V

what did Kim smash yesterday

SENTENCE

CLAUSE

PrCS CORE

NUC

RP RP V[PRED+]

what Kim smash

CLAUSE∗

TNS[OP+]

did

CORE∗

ADV[PERI+]

yesterday
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Syntactic composition

Mode of composition II: (sister) adjunction
SENTENCE

CLAUSE

CORE

NUC

RP ADV[PERI+] PRED RP ADV[PERI+] ADV[PERI+]

V

Kim evidently smashed the glass deliberately yesterday

SENTENCE

CLAUSE

CORE

NUC

RP V[PRED+] RP

Kim smashed the glass

CLAUSE∗

ADV[PERI+]

evidently

CORE∗

ADV[PERI+]

deliberately

CORE∗

ADV[PERI+]

yesterday

Issue: Crossing branches (more about this later)
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Syntactic composition

Wh-extraction

(1) What does John think Kim smashed?

Possible analyses of (1):

SENTENCE

CLAUSE

PrCS CLAUSE

RP CORE CLAUSE

RP NUC CORE

RP NUC

what does John think Kim smashed

SENTENCE

CLAUSE

PrCS CORE CLAUSE

RP RP NUC CORE

RP NUC

what does John think Kim smashed
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CLAUSE

PrCS CLAUSE
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CLAUSE
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Syntactic composition

Wh-extraction

(2) What does John think Mary claimed Kim smashed?

Compositional derivation of (2):

SENTENCE

CLAUSE

CLAUSE

PrCS CORE CLAUSE

RP RP NUC

think
CLAUSE

CORE CLAUSE

RP NUC

claim
CLAUSE

CORE

RP NUC

smash
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Syntactic composition

Wh-extraction

(2) What does John think Mary claimed Kim smashed?

Compositional derivation of (2):×SENTENCE

CLAUSE

CLAUSE

PrCS CORE CLAUSE

RP RP NUC

think
CLAUSE

CORE CLAUSE

RP NUC

claim
CLAUSE

CORE

RP NUC

smash

SENTENCE

CLAUSE

CLAUSE

CORE CLAUSE

RP NUC

think
CLAUSE

CORE CLAUSE

RP NUC

claim

CLAUSE

PrCS CLAUSE

RP CORE

RP NUC

smash
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Syntactic composition

Mode of composition III: wrapping (substitution) (special
versions)

γ

δ

X

β

Xα

X

X

 

γ

δ α

β

X

X

γ

β

X

X
α

X

X

 

γ

α

β

X

X
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Syntactic composition

Control and matrix coding (≈ raising)

SENTENCE

CLAUSE

CORE CORE CORE

RP NUC RP CLM NUC RP CLM NUC RP

Mary expected John to ask Kim to clean the floor

SENTENCE

CLAUSE

CORE
CORE

CORE CORE

RP NUC RP CLM NUC CLM NUC RP

John told Kim to try to clean the floor

SENTENCE

CLAUSE

CORE
CORE

CORE CORE

RP NUC CLM NUC RP CLM NUC RP

John tried to persuade Kim to clean the floor
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SENTENCE

CLAUSE

CORE CORE CORE

RP NUC RP CLM NUC RP CLM NUC RP

Mary expected John to ask Kim to clean the floor

CLAUSE

CORE CORE

RP NUC RP

expected

CLAUSE

CORE CORE

NUC RP

(to) ask

CLAUSE

CORE

NUC RP

(to) clean

 

CLAUSE

CORE CORE CORE

RP NUC RP NUC RP NUC RP
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Syntactic composition

Control and matrix coding (≈ raising)

SENTENCE

CLAUSE

CORE
CORE

CORE CORE

RP NUC CLM NUC RP CLM NUC RP

John tried to persuade Kim to clean the floor

CLAUSE

CORE

CORE CORE

RP NUC

tried

CLAUSE

CORE CORE

NUC RP

(to) persuade

 

CLAUSE

CORE CORE

CORE CORE

RP NUC RP NUC RP
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Syntactic composition

Control, matrix coding & wh-extraction

(3) Whom did Mary expect John to ask to clean the floor?

CLAUSE

CORE CORE

RP NUC RP

expected

CLAUSE

PrCS CORE CORE

RP NUC

(to) ask

CLAUSE

CORE

NUC RP

(to) clean

 

CLAUSE

PrCS CORE CORE CORE

RP RP NUC RP NUC NUC RP
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Syntactic composition

Modes of composition ( Tree Wrapping Grammar; TWG)

I. Simple substitution
α
X

β

X
 

α

β

X

II. Adjunction
α

β

X

γ

X∗  
α

β γ

X

III. Wrapping substitution

γ

δL δR

Y

β

X
α

Y

X

 α

γ

δL δR

Y

β

X
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Formal properties of TWGs

Example: TWG for {w3 |w ∈ {a,b}+}.

X

U V Z

A3

A2

V

a V

X

A3

Z

a Z

A2

X

U

a U

A5

A4

V

a

X

A5

Z

a

A4

X

U

a

(+ same trees for b and B1, . . . ,B5 resp.)
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k -TWG

Idea of k -TWG: limit the number of times a node can be part of a
wrapping spine to k .

We define the wrapping decoration of a specific derivation of some
tree γd as the following set of node pairs W (γd ):

In every wrapping substitution step with r the root and v the
substitution node in the target tree, 〈r , v〉 ∈W (γd ).
Nothing else is in W (γd ).

X

U V Z

A4

X

U

a

A5

A4

V

a

X

A5

Z

a

X

A5

A4

X

U V Z

a a a
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k -TWG

For every node in a derived tree, the gap degree k gives the
number of wrapping spines (dominance edges) stretching
across that node (with respect to a specific derivation).

If two such edges are nested, only the innermost counts.

The maximal gap degree of the nodes gives the wrapping
degree of the derivation.

The minimal wrapping degree of all derivations for a given
derived tree gives the wrapping degree of the derived tree.

The k -tree language of a TWG is then the set of all its derived
trees with wrapping degree ≤ k .

The tree language of a k -TWG G is defined as the k -tree language
of the TWG G.
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k -TWG

Example: TWG for {w3 |w ∈ {a,b}+}, derivations:

X

A5

A4

X

U V Z

a a a

X
A5

A4
X
A3
A2
X

U V Z

a a aU V Z

a a a

(only the red dominance edges count⇒ gap/wrapping degree k = 3)
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k -TWG

A k > 1 allows extraction out of several arguments

(4) Bücher
books

hat
has

derjenige
that

Student
student

drei
three

gekauft
bought

der
who

am meisten
the most

Geld
money

hatte
had
‘the student with the most money bought three books’

(from Chen-Main & Joshi, 2012)

CLAUSE

PrCS

Bücher

CORE

RP

drei

CORE

Aux RP RP NUC

hat gekauft

CLAUSE

RP

derj. Stud.

CLAUSE

der . . .
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the most

Geld
money

hatte
had
‘the student with the most money bought three books’

(from Chen-Main & Joshi, 2012)

CLAUSE

PrCS

Bücher

CORE

RP

drei

CORE

Aux RP RP NUC

hat gekauft

CLAUSE

RP

derj. Stud.

CLAUSE

der . . .
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k -TWG and simple CFTG of rank k

For every k -TWG, a simple Context-Free Tree Grammar (CFTG)
of rank k can be constructed (Kallmeyer, 2016)

This, in turn, is equivalent to a well-nested Linear Context-Free
Rewriting System (LCFRS) of fan-out k + 1.

Consequently, k -TWGs are in particular mildly context-sensitive.
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k -TWG and simple CFTG of rank k

To show: for every k -TWG one can construct an equivalent simple
context-free tree grammar of rank k .

A simple context-free tree grammar (CFTG, Rounds, 1970;
Engelfriet & Schmidt, 1977) is a quadruple G = 〈N,Σ,P,S〉, where

1 N is a ranked alphabet of non-terminals,
2 Σ an unranked alphabet of terminals,
3 S ∈ N is of rank 0, and
4 P is a finite set of productions of the form

Ax1 . . . xn → t [x1, . . . , xn]

where A ∈ N(n) and t [x1, . . . , xn] is a tree over N∪Σ∪{x1, . . . , xn}
with each of the x1, . . . , xn occurring exactly once as a leaf
label.

The rank of G is the maximal rank of its non-terminals.
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k -TWG and simple CFTG of rank k

Example: simple CFTG for {w3 |w ∈ {a,b}+}:
N0 = {S},N(3) = {X}, Σ = {a,b,A}, S the start symbol.

P contains the following productions:

S → Xaaa |Xbbb
Xx1x2x2 → X (Aax1)(Aax2)(Aax3) |X (Abx1)(Abx2)(Abx3) |Ax1x2x3

S ⇒ X

aaa

⇒ X

A

ab

A

ab

A

ab

⇒ X

A

A

ab

a

A

A

ab

a

A

A

ab

a

⇒ A

A

A

ab

a

A

A

ab

a

A

A

ab

a
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k -TWG and simple CFTG of rank k

Idea of the construction:

The CFTG terminals comprise the terminals and non-terminals
from the TWG.

The CFTG non-terminals have the form [A,A1A2 . . .An] where

A is the root category of the tree this nonterminal expands to and
A1A2 . . .An are the categories of pending gaps from wrappings
that stretch across this tree.

I.e., the CFTG non-terminals encode possible gap sets of
nodes in specific derivations.
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k -TWG and simple CFTG of rank k

TWG for {(bc)n |n ≥ 1} ∪ {c}:

γ1 AB

Bε

γ2

Aε

AB

Bε

bε Cε

γ′2

AB

AB

BB

bε CB

γ3 CB

cε Bε

γ4 Cε

cε

(Decoration with possible gap categories.)

Equivalent simple CFTG:

S → [A], S → [C]
γ1: [A,B]x1 → Ax1
γ2: [A]→ A([A,B](Bb[C]))
γ′2: [A,B]x1 → A([A,B](Bb([C,B]x1)))
γ3: [C,B]x1 → Ccx1
γ4: [C]→ Cc
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k -TWG and simple CFTG of rank k

Example: 3-TWG for {w3 |w ∈ {a,b}+}
Guess possible gap sequences and construct CFTG rules
accordingly:

XU,V ,Z

Uε Vε Zε

A4VZ

XUVZ

Uε

a

A5Z

A4VZ

Vε

a

Xε

A5Z

Zε

a

X

A5

A4

X

U V Z

a a a

Corresponding CFTG productions:
S → [X ]
[X ,UVZ ]x1x2x3 → Xx1x2x3
[A4,VZ ](x2, x3)→ A4([X ,UVZ ](Ua, x2, x3))
[A5,Z ](x3)→ A5([A4,VZ ](Va, x3))
[X ]→ X ([A5,Z ](Za))
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k -TWG and simple CFTG of rank k

Example continued
TWG derivation:

XUVZ

Uε Vε Zε

A4VZ

XUVZ

Uε

a

A5Z

A4VZ

Vε

a

Xε

A5Z

Zε

a

 

X

A5

A4

X

U V Z

a a a

CFTG derivation:
S ⇒ [X ]⇒ X

[A5,Z ]

Z

a

⇒ X

A5

[A4,VZ ]

Z

a

V

a

⇒ X

A5

A4

[X ,UVZ ]

Z

a

V

a

U

a

⇒ X

A5

A4

X

Z

a

V

a

U

a
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Syntax-semantics interface

Example
(5) Adam ate an apple.

RP[I=u]

‘Adam’
u

[
person
NAME ‘Adam’

]

CLAUSE

CORE[I=e]

RP[I=y ]NUC

V

‘ate’

RP[I=x ]

e




eating
ACTOR x
THEME y




RP[I=v ]

‘an apple’
v
[
apple

]x ,u y ,v

CLAUSE

CORE[I=e]

RP[I=y ]

‘an apple’

NUC

V

‘ate’

RP[I=x ]

‘Adam’

e




eating

ACTOR x

[
person
NAME ‘Adam’

]

THEME y
[
apple

]




eeating

x
person

‘Adam’

y apple

ACTOR

NAME

THEME
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Syntax-semantics interface

Summary of the LTAG + frame semantics perspective on RRG:

Elementary construction
= elementary tree (full argument projection) + semantic frame

+ linking of frame node variables to interface features in the tree

“Complicate locally, simplify globally”
1. A small set of (global) operations for syntactic composition
2. Many linguistic regularities and generalizations are encoded in

elementary constructions → decomposition in
the metagrammar

Special tree operations because of flat syntactic structures:
(Wrapping) substitution and sister adjunction.

Argument linking rules as constraints in the metagrammar.
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Operator projection

NUC

  PRED

NUC

     CORE

V

 CLAUSE

SENTENCE

CLAUSE

   CORE

SENTENCE

Aspect 
Negation 
Directionals

Directionals 
Event quant 
Modality 
Negation

Status 
Tense 
Evidentials 
Illocutionary  
    Force

SENTENCE

CLAUSE

   CORE

NUC

PRED

V

Will they have to be leaving?

V

ASP          NUC

TNS             CLAUSE

 IF                    CLAUSE

SENTENCE

NP

MOD          CORE

[Van Valin 2005: 12/14]
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Adding features: FTWG

In TAG (mostly binary tree structures), we have top and bottom
feature stuctures that can constrain adjunction.

S

a S[C +]
[C −]

b

S[C +]

S∗[C 1 ]c  

S

a S[C +]
[C +]

S[C 1 ]
[C −]

c

b
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Adding features: FTWG

In our flat structures with sister adjunction, we use left and right edge
features to capture adjunction constraints.

[C +] [C −]

S

a b

[C +] [C 1 ]

S∗

c

 
[C +] [C +] [C 1 ] [C −]

S

a c b
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Adding features: FTWG

Feature-based Tree Wrapping Grammar (FTWG)

Finite set of untyped feature structures with structure sharing
within elementary trees (just like TAG, Vijay-Shanker & Joshi,
1988).

Nodes have a single feature structure while edges have a left
one and a right one.

In a sister adjunction, the feature structure of the root of the
adjoined tree unifies with the one of the target node.

In the final derived tree, the two feature structures between two
neighbouring edges have to unify.

Furthermore, features on the leftmost (resp. rightmost) edge
percolate upwards, except if there is a substitution node, which
blocks feature percolation.
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Integrating operators

Each operator belongs to a certain level of RRG’s layered structure:

Layer Nucleus Core Clause
Operators Aspect Directionals Status

Negation Event quantification Tense
Directionals Modality Evidentials

Negation Illocutionary Force

The operator level explains
the scope behavior: structurally higher operators take scope
over lower ones
surface order constraints: higher operators are further away
from the nucleus of the structure.
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Integrating operators

Problem: constituent and operator structure are not completely
parallel. An operator belonging to a specific layer can be surrounded
by elements belonging to a lower layer in the constituent structure.

CL

CO

RP

John

NUC

V

V

NUC

CO

CL

sleeping

TNS

has

ASP

been

 

CL

CO

RP

John

NUC

V

sleepinghas been
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Integrating operators

The following holds:
The hierarchical order of constituent and operator structure is
the same.
The existence of a layer in the operator projection requires that
this layer also exists in the constituent structure.

We model the operator projection within the features while attaching
the operators at their surface position.

CL[TNS pres]

CO

RP

John

NUC[ASP perf ]

V

sleeping

OP[CL [TNS pres]]

has OP[NUC [ASP perf ]]

been
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Integrating operators

Features for operators (syntactic category OP):

edge features TNS etc. that express the presence/absence of a
specific operator and that can be used to formulate obligatory
adjunction constraints.

edge feature OPS (= operator structure), its value being a feature
structure with features CL, CO and NUC with possible values +
or −.
OPS guarantees that nuclear, core and clausal operators have
to appear in this order when moving outwards from the nuclear
predicate.

node features that specify the contribution of the operator, for
instance [NUC [ASP perf], CL [TNS past]] for the operator had in
“John had slept”.
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Integrating operators

[
TNS 2

OPS 4

] [
TNS 2

OPS 4

] [
TNS −

]

CL[TNS 1 ]

[TNS +]

CO[TNS 1 ]

RP NUC

[OPS 3

CL −
CO −
NUC −

] [OPS 3 ]

V

sleeping

[
TNS +
OPS[CL +]

]
[TNS −]

CO[TNS pres]∗

OP[CL [TNS pres]]

has

[OPS[NUC +]] [OPS

[
CL −
CO −

]
]

NUC[ASP perf ]∗

OP[NUC [ASP perf ]]

been
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Integrating operators

[
TNS 2

OPS 4

] [
TNS 2

OPS 4

] [
TNS −

]

CL[TNS pres]

[TNS +]

CO[TNS pres]

RP

John

NUC[ASP perf ]

[OPS 3

CL −
CO −
NUC −

] [OPS 3 ]

V

sleeping

[
TNS +
OPS[CL +]

]
[TNS −]

OP[CL [TNS pres]]

has [OPS[NUC +]] [OPS

[
CL −
CO −

]
]

OP[NUC [ASP perf ]]

been
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Operators in complex sentences

Cosubordination structures in RRG

have basically the form [[ ]X [ ]X]X.
have the characteristic property that X-operators are realized
only once but have scope over both constituents.

Examples from Van Valin (2005):

(6) [[Gid-ip]CO
go-LM1

[gör-meli-yiz]CO]CO
see-MOD-1PL

(Turkish)

‘We ought to go and see.’

(7) [[Kim mustMOD go]CO [to try]CO [to wash the car]CO]CO

We assume that it is a general property of cosubordination elementary
trees that operator features get passed upwards to the higher X.

1LM = linkage marker
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Operators in complex sentences

[[Gid-ip]CO [gör-meli-yiz]CO]CO

Proposal for the elementary trees:

Special cosubordination tree for gör PRO that provides a lower
and a higher CO node.

CO operator features (e.g., MOD) are shared between the two
CO nodes and thereby passed upwards from the lower node.

gid-ip is added by adjunction, targeting the higher CO node,
thereby adding a second CO daughter.

Edge feature COS (values +/-) that indicates that adjunction of
at least one more core to the left is obligatory.

Node feature COS (values +/-) that indicate whether a node is
the root of a cosubordination structure.
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Operators in complex sentences

Cosubordination structure

CL

[COS +]

CO[MOD 1 ,COS +]

[COS −]

CO[MOD 1 ]

NUC PRO

V

gör yiz

CO[COS +]

[COS +]

CO
NUC LM

V

gid ip

CO[MOD deont]

OP[CO [MOD deont]]

meli
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Operators in complex sentences

Cosubordination structure

CL
[COS +]

CO[MOD deont ,COS +]

[COS +]

CO

[COS −]

CO[MOD deont]

NUC LM NUC OP[CO [MOD deont]]
PRO

V V

gid ip gör meli yiz
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Operators in complex sentences

In subordination structures, operator projections are built locally.
The composition operation is substitution, which means that edge
feature percolation is blocked.

(8) [[Kim told Pat]CO [that [she will arrive late]CO ]CL ]CL

The two CL nodes in this structure have different TNS values, provided
by told and will respectively.
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Operators in complex sentences

Subordination structure

CL[TNS past]
[TNS +]

CO CL

RP

[TNS +]

NUC

V

RP

toldKim Pat

CL[TNS 1 ]

LM
[TNS +]

CO[TNS 1 ]

RP
[TNS 2 ] [TNS 2 ]

CO[TNS fut]
[TNS +] [TNS −]

OP

[TNS −]

NUC

V

ADV

that she

will

arrive late
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Conclusion: Summary

We provided a TAG-inspired formalization of RRG as a tree-rewriting
grammar.

Composition operations are (wrapping) substitution for complement
insertion and sister adjunction for adding modifiers.

The resulting formalism, k-TWG is mildly context-sensitive.
More conretely, k-TWG are weakly equivalent to well-nested
(k + 1)-LCFRS.

We introduced features and proposed to use left and right edge
features in order to model adjunction constraints.

Given this architecture, RRG’s operator projection can be integrated
into the constituent structure, modeling the operator hierarchy
and its interaction with the constituent structure within the
features.
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Conclusion

To do (inter alia)

Inspect further cases of complex sentences.

Model the scopal structure of periphery modifiers (e.g., adverbs).
The assumption is that this can be done in a similar way as in
the case of the operator scope.

Integrate this formalization of RRG into XMG in order to enable
grammar implementation.

Integrate RRG parsing into TuLiPA in order to enable grammar
parsing for testing.

Long-term goal: full formalization of RRG and integrated framework
for RRG-based grammar development.
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Merci de votre attention!
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