Same syntax, different semantics:

A compositional approach to idiomaticity in multi-word expressions

Timm Lichte \& Laura Kallmeyer
University of Düsseldorf, Germany
CSSP, Paris, October 8-10, 2015

Introduction

Multi-word expressions (MWEs) with literal and idiomatic meanings:
(1) John spilled the beans. literal meaning: 'John spilled the beans.'
 idiomatic meaning: 'John revealed one or more secrets.'
(2) John kicked the bucket. literal meaning: 'John kicked the bucket.' idiomatic meaning: 'John died.'

```
"non-decomposable"
```


Introduction

literal vs. idiomatic readings

Introduction

literal vs. idiomatic readings

\Rightarrow How to model them with precision grammars?
\Rightarrow What sort of ambiguity should be preferred?
\Rightarrow One approach for all types of MWEs?

Introduction

literal vs. idiomatic readings

\Rightarrow How to model them with precision grammars?
\Rightarrow What sort of ambiguity should be preferred?
\Rightarrow One approach for all types of MWEs?
target framework: LTAG + frame semantics
preceding this work: Lichte \& Kallmeyer (2014; 2015)

Outline

(1) Tree-Adjoining Grammar + frame semantics
(2) Former work

- Syntactic ambiguity approaches with TAG
- Semantic ambiguity approaches

3 New: Semantic ambiguity approach with TAG
(4) Summary

Outline

(1) Tree-Adjoining Grammar + frame semantics
(2) Former work

- Syntactic ambiguity approaches with TAG
- Semantic ambiguity approaches
(3) New: Semantic ambiguity approach with TAG

4 Summary

Tree-Adjoining Grammar

Tree-Adjoining Grammar (TAG) ${ }^{[2,16,17]}$

- A grammar consists of elementary trees.

■ Elementary trees can be combined by two operations:
■ substitution: replace a non-terminal leaf with an initial tree

Tree-Adjoining Grammar

Tree-Adjoining Grammar (TAG) ${ }^{[2,16,17]}$

- A grammar consists of elementary trees.

■ Elementary trees can be combined by two operations:
■ substitution: replace a non-terminal leaf with an initial tree

- adjunction: replace an inner node with an auxiliary tree

Tree-Adjoining Grammar

Tree-Adjoining Grammar (TAG) ${ }^{[2,16,17]}$

- A grammar consists of elementary trees.

■ Elementary trees can be combined by two operations:

- substitution: replace a non-terminal leaf with an initial tree
- adjunction: replace an inner node with an auxiliary tree
- TAG is more powerful than CFG, but still less powerful than LFG, HPSG, TG.

Tree-Adjoining Grammar

Tree-Adjoining Grammar (TAG) ${ }^{[2,16,17]}$

- A grammar consists of elementary trees.

■ Elementary trees can be combined by two operations:

- substitution: replace a non-terminal leaf with an initial tree
- adjunction: replace an inner node with an auxiliary tree

■ TAG is more powerful than CFG, but still less powerful than LFG, HPSG, TG.

- Elementary trees cover an extended domain of locality.
- The head immediately combines with its arguments.
- no predetermined derivational order
\Rightarrow constructionist framework! ${ }^{[14]}$

Tree-Adjoining Grammar

Tree-Adjoining Grammar (TAG) ${ }^{[2,16,17]}$

■ A grammar consists of elementary trees.
■ Elementary trees can be combined by two operations:

- substitution: replace a non-terminal leaf with an initial tree
- adjunction: replace an inner node with an auxiliary tree

■ TAG is more powerful than CFG, but still less powerful than LFG, HPSG, TG.

- Elementary trees cover an extended domain of locality.
- The head immediately combines with its arguments.

■ no predetermined derivational order
\Rightarrow constructionist framework! ${ }^{[14]}$
■ Lexical generalizations are expressed in the metagrammar.

Frame semantics

■ Frames emerged as a representation format of lexical and conceptual knowledge. ${ }^{[6,12,22]}$

Frame semantics

■ Frames emerged as a representation format of lexical and conceptual knowledge. ${ }^{[6,12,22]}$

- Frames can be formalized as (extended) typed feature structures. ${ }^{[18,27]}$

Frame semantics

■ Frames emerged as a representation format of lexical and conceptual knowledge. ${ }^{[6,12,22]}$

■ Frames can be formalized as (extended) typed feature structures. ${ }^{[18,27]}$

- Frames \neq FrameNet frames ${ }^{[26]}$

Frame semantics

■ Frames emerged as a representation format of lexical and conceptual knowledge. ${ }^{[6,12,22]}$

■ Frames can be formalized as (extended) typed feature structures. ${ }^{[18,27]}$

- Frames \neq FrameNet frames ${ }^{[26]}$

■ Frame semantics with quantification: see Kallmeyer, Osswald, Pogodalla (this conference)

TAG + frame semantics

Kallmeyer \& Osswald [18]:

■ lexicon: pairs of elementary trees and frames

$\left[\begin{array}{ll}0\end{array}\right]\left[\begin{array}{ll}\text { bounded-locomotion } \\ \text { ACTOR } & 1 \\ \text { MOVER } & 1 \\ \text { GOAL } & 2 \\ \text { PATH } & \text { path } \\ \text { MANNER } & \text { walking }\end{array}\right]$
walked
■ Elementary trees are enriched with interface features, which contain base labels from the frame representation.

■ unification of interface features \leadsto unification of frames

- parallel composition of derived trees and larger frames

TAG + frame semantics: Example

Outline

(1) Tree-Adjoining Grammar + frame semantics

(2) Former work

- Syntactic ambiguity approaches with TAG
- Semantic ambiguity approaches
(3) New: Semantic ambiguity approach with TAG

4 Summary

Syntactic ambiguity approaches with TAG

(idea from Abeillé \& Schabes) ${ }^{[1,3,4]}$

Idiomaticity through multiple anchoring: Components of an MWE jointly anchor an elementary tree.

Syntactic ambiguity approaches with TAG

(idea from Abeillé \& Schabes) ${ }^{[1,3,4]}$
The literal meaning is evoked by regular single-anchored elementary trees:

Syntactic ambiguity approaches with TAG

Example with "decomposable" spill the beans:

Syntactic ambiguity approaches with TAG

Example with "decomposable" spill the beans:

Syntactic ambiguity approaches elsewhere

Syntactic ambiguity approach

There are different syntactic derivations/representations for literal and idiomatic meanings.

Also found in: ${ }^{[29]}$
■ Transformational Grammar (Chomsky 1980)
■ Lexical-functional Grammar (Bresnan 1982)

- Head-driven Phrase Structure Grammar (Sailer 2000) ${ }^{[30,33]}$

■ Sign-based Construction Grammar (Kay \& Sag To appear)

Syntactic ambiguity approaches elsewhere

Syntactic ambiguity approach

There are different syntactic derivations/representations for literal and idiomatic meanings.

Also found in: ${ }^{[29]}$
■ Transformational Grammar (Chomsky 1980)
■ Lexical-functional Grammar (Bresnan 1982)

- Head-driven Phrase Structure Grammar (Sailer 2000) ${ }^{[30,33]}$

■ Sign-based Construction Grammar (Kay \& Sag To appear)

But there are (general?) problems ...

Syntactic ambiguity approaches: Problems

- bad for parsing: non-delayable ambiguity resolution

Syntactic ambiguity approaches: Problems

- bad for parsing: non-delayable ambiguity resolution
- missing compatibility with psycholinguistic results (Müller \& Wechsler): MWEs cause an increased semantic rather than syntactic processing load. ${ }^{[28,34,35]}$

Syntactic ambiguity approaches: Problems

■ bad for parsing: non-delayable ambiguity resolution
■ missing compatibility with psycholinguistic results (Müller \& Wechsler): MWEs cause an increased semantic rather than syntactic processing load. ${ }^{[28,34,35]}$

■ missing connection between literal and idiomatic meaning

Syntactic ambiguity approaches: Problems

- bad for parsing: non-delayable ambiguity resolution

■ missing compatibility with psycholinguistic results (Müller \& Wechsler): MWEs cause an increased semantic rather than syntactic processing load. ${ }^{[28,34,35]}$

■ missing connection between literal and idiomatic meaning
■ missing account of the "extendability" of literal senses (Egan):

Syntactic ambiguity approaches: Problems

■ bad for parsing: non-delayable ambiguity resolution
■ missing compatibility with psycholinguistic results (Müller \& Wechsler): MWEs cause an increased semantic rather than syntactic processing load. ${ }^{[28,34,35]}$

- missing connection between literal and idiomatic meaning

■ missing account of the "extendability" of literal senses (Egan):
(3) If you let this cat out of the bag, a lot of people are going to get scratched.

Syntactic ambiguity approaches: Problems

■ bad for parsing: non-delayable ambiguity resolution

- missing compatibility with psycholinguistic results (Müller \& Wechsler): MWEs cause an increased semantic rather than syntactic processing load. ${ }^{[28,34,35]}$
- missing connection between literal and idiomatic meaning

■ missing account of the "extendability" of literal senses (Egan):
(3) If you let this cat out of the bag, a lot of people are going to get scratched.

■ missing generalizations on lexical variability (Pulman): \{put/lay/spread\} the cards on the table \{let the cat / the cat is\} out of the bag

Syntactic ambiguity approaches: Problems

■ bad for parsing: non-delayable ambiguity resolution
■ missing compatibility with psycholinguistic results (Müller \& Wechsler): MWEs cause an increased semantic rather than syntactic processing load. ${ }^{[28,34,35]}$

■ missing connection between literal and idiomatic meaning
■ missing account of the "extendability" of literal senses (Egan):
(3) If you let this cat out of the bag, a lot of people are going to get scratched.

■ missing generalizations on lexical variability (Pulman): \{put/lay/spread\} the cards on the table \{let the cat / the cat is\} out of the bag

- difficult to deal with partial uses:

Syntactic ambiguity approaches: Problems

■ bad for parsing: non-delayable ambiguity resolution

- missing compatibility with psycholinguistic results (Müller \& Wechsler): MWEs cause an increased semantic rather than syntactic processing load. ${ }^{[28,34,35]}$
- missing connection between literal and idiomatic meaning

■ missing account of the "extendability" of literal senses (Egan):
(3) If you let this cat out of the bag, a lot of people are going to get scratched.

■ missing generalizations on lexical variability (Pulman): \{put/lay/spread\} the cards on the table \{let the cat / the cat is\} out of the bag

- difficult to deal with partial uses:
(4) Eventually she spilled all the beans. But it took her a few days to spill them all. (Riehemann)

Syntactic ambiguity approaches: Problems

■ bad for parsing: non-delayable ambiguity resolution

- missing compatibility with psycholinguistic results (Müller \& Wechsler): MWEs cause an increased semantic rather than syntactic processing load. ${ }^{[28,34,35]}$
■ missing connection between literal and idiomatic meaning
■ missing account of the "extendability" of literal senses (Egan):
(3) If you let this cat out of the bag, a lot of people are going to get scratched.

■ missing generalizations on lexical variability (Pulman): \{put/lay/spread\} the cards on the table \{let the cat / the cat is\} out of the bag

- difficult to deal with partial uses:
(4) Eventually she spilled all the beans. But it took her a few days to spill them all. (Riehemann)
(5) Pat pulled some strings for Chris. But Alex didn't have access to any strings. (Manfred Sailer, pc)

Semantic ambiguity approaches

Semantic ambiguity approach

There is one syntactic derivation/representation for literal and idiomatic meanings.
\Rightarrow There is no special lexical entry for MWEs; kick and spill each have only one lexical entry.
semantic ambiguity

lexicon-/disjunction-based compositional
inference-based
non-compositional

Lexicon-/disjunction-based: Gazdar et al. (1985)

Components of decomposable MWEs are assigned disjunctions over meaning constants (of intensional logic):
(6)
a. spill $\leadsto \quad$ spill' \vee spill-idiom ${ }^{\prime}$ beans $\sim \quad$ beans ${ }^{\prime} \vee$ beans-idiom'
b. spill-idiom' (beans-idiom'): defined spill-idiom' (beans'): undefined spill' (beans-idiom'): undefined

Lexicon-/disjunction-based: Gazdar et al. (1985)

Components of decomposable MWEs are assigned disjunctions over meaning constants (of intensional logic):
(6)
a. spill $\quad \leadsto \quad$ spill \vee spill-idiom ${ }^{\prime}$ beans $\quad \sim \quad$ beans ${ }^{\prime} \vee$ beans-idiom'
b. spill-idiom' (beans-idiom'): defined spill-idiom' (beans'): undefined spill' (beans-idiom'): undefined

Also applicable to non-decomposable idioms (not in Gazdar et al. 1985):
(7)
a. kick $\leadsto \quad$ kick' \vee kick-idiom'
bucket $\leadsto \quad$ bucket' \vee bucket-idiom ${ }^{\prime}$
b. kick-idiom' (bucket-idiom'): defined kick-idiom' (bucket'): undefined kick' (bucket-idiom'): undefined

Lexicon-/disjunction-based: Gazdar et al. (1985)

Advantages of Gazdar et al.'s partial function approach:

- unified syntax of literal and idiomatic readings

Drawbacks:

Lexicon-/disjunction-based: Gazdar et al. (1985)

Advantages of Gazdar et al.'s partial function approach:
■ unified syntax of literal and idiomatic readings

- delayable ambiguity resolution

Drawbacks:

Lexicon-/disjunction-based: Gazdar et al. (1985)

Advantages of Gazdar et al.'s partial function approach:

- unified syntax of literal and idiomatic readings
- delayable ambiguity resolution
- adequate in terms of human processing

Drawbacks:

Lexicon-/disjunction-based: Gazdar et al. (1985)

Advantages of Gazdar et al.'s partial function approach:

- unified syntax of literal and idiomatic readings
- delayable ambiguity resolution
- adequate in terms of human processing
(Prediction: increased semantic processing load; no categorical difference between lexical and idiomatic meanings)

Drawbacks:

Lexicon-/disjunction-based: Gazdar et al. (1985)

Advantages of Gazdar et al.'s partial function approach:
■ unified syntax of literal and idiomatic readings

- delayable ambiguity resolution
- adequate in terms of human processing
(Prediction: increased semantic processing load; no categorical difference between lexical and idiomatic meanings)
■ closer connection between literal and idiomatic meanings

Drawbacks:

Lexicon-/disjunction-based: Gazdar et al. (1985)

Advantages of Gazdar et al.'s partial function approach:

- unified syntax of literal and idiomatic readings
- delayable ambiguity resolution
- adequate in terms of human processing
(Prediction: increased semantic processing load; no categorical difference between lexical and idiomatic meanings)
■ closer connection between literal and idiomatic meanings

Drawbacks:

- invention of masses of meaning constants that essentially reflect morphological properties

Lexicon-/disjunction-based: Gazdar et al. (1985)

Advantages of Gazdar et al.'s partial function approach:

■ unified syntax of literal and idiomatic readings

- delayable ambiguity resolution
- adequate in terms of human processing
(Prediction: increased semantic processing load; no categorical difference between lexical and idiomatic meanings)
■ closer connection between literal and idiomatic meanings

Drawbacks:

- invention of masses of meaning constants that essentially reflect morphological properties
- partial functions have to be defined explicitly

Inference-based: Pulman (1993)

The idiomatic meaning is deduced from the literal one by means of "quasi-inference". Hence MWE-components are equipped with their literal meaning only!
(8) $\operatorname{kick}^{\prime}(x, y) \wedge \operatorname{bucket}^{\prime}(y) \approx \operatorname{die}^{\prime}(x)$

Inference-based: Pulman (1993)

The idiomatic meaning is deduced from the literal one by means of "quasi-inference". Hence MWE-components are equipped with their literal meaning only!
(8) $\operatorname{kick}^{\prime}(x, y) \wedge \operatorname{bucket}^{\prime}(y) \approx \operatorname{die}^{\prime}(x)$

Drawbacks of Pulman's quasi-inference approach:
■ poorly constrained surface: *The bucket was kicked.

Inference-based: Pulman (1993)

The idiomatic meaning is deduced from the literal one by means of "quasi-inference". Hence MWE-components are equipped with their literal meaning only!
(8) $\operatorname{kick}^{\prime}(x, y) \wedge \operatorname{bucket}^{\prime}(y) \approx \operatorname{die}^{\prime}(x)$

Drawbacks of Pulman's quasi-inference approach:
■ poorly constrained surface: *The bucket was kicked.
\Rightarrow Pulman: due to information structure!

Inference-based: Pulman (1993)

The idiomatic meaning is deduced from the literal one by means of "quasi-inference". Hence MWE-components are equipped with their literal meaning only!
(8) $\operatorname{kick}^{\prime}(x, y) \wedge \operatorname{bucket}^{\prime}(y) \approx \operatorname{die}^{\prime}(x)$

Drawbacks of Pulman's quasi-inference approach:

- poorly constrained surface: *The bucket was kicked.
\Rightarrow Pulman: due to information structure!
(The bucket will be kicked. (Manfred Sailer))

Inference-based: Pulman (1993)

The idiomatic meaning is deduced from the literal one by means of "quasi-inference". Hence MWE-components are equipped with their literal meaning only!
(8) $\operatorname{kick}^{\prime}(x, y) \wedge \operatorname{bucket}^{\prime}(y) \approx \operatorname{die}^{\prime}(x)$

Drawbacks of Pulman's quasi-inference approach:

- poorly constrained surface: *The bucket was kicked.
\Rightarrow Pulman: due to information structure!
(The bucket will be kicked. (Manfred Sailer))
- MWEs with bounded/cranberry words: leave sb. in the lurch

Inference-based: Pulman (1993)

The idiomatic meaning is deduced from the literal one by means of "quasi-inference". Hence MWE-components are equipped with their literal meaning only!
(8) $\operatorname{kick}^{\prime}(x, y) \wedge \operatorname{bucket}^{\prime}(y) \approx \operatorname{die}^{\prime}(x)$

Drawbacks of Pulman's quasi-inference approach:

- poorly constrained surface: *The bucket was kicked.
\Rightarrow Pulman: due to information structure! (The bucket will be kicked. (Manfred Sailer))
- MWEs with bounded/cranberry words: leave sb. in the lurch
- MWEs with ill-formed syntax: trip the light fantastic

Inference-based: Pulman (1993)

The idiomatic meaning is deduced from the literal one by means of "quasi-inference". Hence MWE-components are equipped with their literal meaning only!
(8) $\operatorname{kick}^{\prime}(x, y) \wedge \operatorname{bucket}^{\prime}(y) \approx \operatorname{die}^{\prime}(x)$

Drawbacks of Pulman's quasi-inference approach:

- poorly constrained surface: *The bucket was kicked.
\Rightarrow Pulman: due to information structure!
(The bucket will be kicked. (Manfred Sailer))
- MWEs with bounded/cranberry words: leave sb. in the lurch
- MWEs with ill-formed syntax: trip the light fantastic
- computationally very powerful: non-monotonic inference rules.

Outline

(1) Tree-Adjoining Grammar + frame semantics

(2) Former work

- Syntactic ambiguity approaches with TAG
- Semantic ambiguity approaches
(3) New: Semantic ambiguity approach with TAG

4. Summary

A lexicon-/disjunction-based approach with TAG

Main problem of Gazdar et al. (1985): tons of extra meaning constants; partial functions have to be defined explicitly.

A lexicon-/disjunction-based approach with TAG

Main problem of Gazdar et al. (1985): tons of extra meaning constants; partial functions have to be defined explicitly.
Our proposal: decompose meaning constants + constraint-based composition!

A lexicon-/disjunction-based approach with TAG

Main problem of Gazdar et al. (1985): tons of extra meaning constants; partial functions have to be defined explicitly.
Our proposal: decompose meaning constants + constraint-based composition!

kick-idiom	$\leadsto\left[\begin{array}{lll}\text { FRAME } & {\left[\begin{array}{ll}\text { dying } & \\ \text { PATIENT } & \square\end{array}\right]} \\ \text { MORPH } & {\left[\begin{array}{ll}\text { LEMMA } & \text { kick }\end{array}\right]}\end{array}\right]$
bucket-idiom'	$\leadsto\left[\begin{array}{ll}\text { FRAME } & {\left[\begin{array}{ll}\text { dying }\end{array}\right]} \\ \text { MORPH } & {\left[\begin{array}{ll}\text { LEMMA } & \text { bucket } \\ \text { DEF } & + \\ \text { NUM } & \text { sing }\end{array}\right]}\end{array}\right]$

A lexicon-/disjunction-based approach with TAG

Main problem of Gazdar et al. (1985): tons of extra meaning constants; partial functions have to be defined explicitly.
Our proposal: decompose meaning constants + constraint-based composition!

kick-idiom ${ }^{\prime}$	$\leadsto\left[\begin{array}{lll}\text { FRAME } & {\left[\begin{array}{ll}\text { dying } & \\ \text { PATIENT } & 1\end{array}\right]} \\ \text { MORPH } & {\left[\begin{array}{ll}\text { LEMMA } & \text { kick }\end{array}\right]}\end{array}\right]$
bucket-idiom ${ }^{\prime}$	$\leadsto\left[\begin{array}{ll}\text { FRAME } & {\left[\begin{array}{ll}\text { dying }\end{array}\right]} \\ \text { MORPH } & {\left[\begin{array}{ll}\text { LEMMA } & \text { bucket } \\ \text { DEF } & + \\ \text { NUM } & \text { sing }\end{array}\right]}\end{array}\right]$

\Rightarrow How to combine those two?

A lexicon-/disjunction-based approach with TAG

bucket

A lexicon-/disjunction-based approach with TAG

A lexicon-/disjunction-based approach with TAG

Result of combining kicked and bucket:

Bargmann's challenge

Here is a challenge from Bargmann (2015):
(9) The whole idea of the really talented/successful person in their 20s isn't a real thing. Or at the very least, it isn't an actual attainable thing. All those people have people behind them pulling string after string for them.

Bargmann's challenge

Here is a challenge from Bargmann (2015):
(9) The whole idea of the really talented/successful person in their 20s isn't a real thing. Or at the very least, it isn't an actual attainable thing. All those people have people behind them pulling string after string for them.

- pull combines with a plurality of strings (??pull a string).

■ string after string is syntactically singular, but semantically plural (Matsuyama, Jackendoff).

Bargmann's challenge

Here is a challenge from Bargmann (2015):
(9) The whole idea of the really talented/successful person in their 20s isn't a real thing. Or at the very least, it isn't an actual attainable thing. All those people have people behind them pulling string after string for them.

■ pull combines with a plurality of strings (??pull a string).
■ string after string is syntactically singular, but semantically plural (Matsuyama, Jackendoff).
\Rightarrow Analyses with purely morpho-syntactic constraints fail.

Bargmann's challenge

Here is a challenge from Bargmann (2015):
(9) The whole idea of the really talented/successful person in their 20s isn't a real thing. Or at the very least, it isn't an actual attainable thing. All those people have people behind them pulling string after string for them.

■ pull combines with a plurality of strings (??pull a string).
■ string after string is syntactically singular, but semantically plural (Matsuyama, Jackendoff).
\Rightarrow Analyses with purely morpho-syntactic constraints fail.
\Rightarrow We need some intermediate level between surface and pure semantics to capture the constraints on pull strings!

Bargmann's challenge

Here is a challenge from Bargmann (2015):
(9) The whole idea of the really talented/successful person in their 20s isn't a real thing. Or at the very least, it isn't an actual attainable thing. All those people have people behind them pulling string after string for them.

■ pull combines with a plurality of strings (??pull a string).
■ string after string is syntactically singular, but semantically plural (Matsuyama, Jackendoff).
\Rightarrow Analyses with purely morpho-syntactic constraints fail.
\Rightarrow We need some intermediate level between surface and pure semantics to capture the constraints on pull strings!

Bargmann's challenge

Here is a challenge from Bargmann (2015):
(9) The whole idea of the really talented/successful person in their 20s isn't a real thing. Or at the very least, it isn't an actual attainable thing. All those people have people behind them pulling string after string for them.

■ pull combines with a plurality of strings (??pull a string).
■ string after string is syntactically singular, but semantically plural (Matsuyama, Jackendoff).
\Rightarrow Analyses with purely morpho-syntactic constraints fail.
\Rightarrow We need some intermediate level between surface and pure semantics to capture the constraints on pull strings!

Working with HPSG, Bargmann proposes a "Semantic Representation approach":

■ idiom constants pull ${ }_{i d}^{\prime}$ and string ${ }_{i d}^{\prime}$ have to co-occur
■ string $_{\text {id }}^{\prime}$ is in the scope of a "non-specific plural quantifier" (Mel'čuk)

Bargmann's challenge: Analysis with TAG

Bargmann's challenge: Analysis with TAG

Bargmann's challenge: Analysis with TAG

Bargmann's challenge: Analysis with TAG

Bargmann's challenge: Analysis with TAG

$\left[\begin{array}{ll}0 & \text { FRAME }\left[\begin{array}{ll}\text { assistance-activity } \\ \text { ACTOR } & 1 \\ \text { INSTR } & 2\end{array}\right] \\ \text { MORPH } & {\left[\begin{array}{ll}\text { LEMMA } & \text { pull }\end{array}\right]}\end{array}\right]$

Bargmann's challenge: Analysis with TAG

Bargmann's challenge: Analysis with TAG

A lexicon-/disjunction-based approach with TAG

Advantages:

■ unified syntax of literal and idiomatic readings

- delayable ambiguity resolution

■ adequate in terms of human processing
(Prediction: increased semantic processing load; no categorical difference between lexical and idiomatic meanings)

- closer connection between literal and idiomatic meanings
+ contraint-based composition

Outline

(1) Tree-Adjoining Grammar + frame semantics

(2) Former work

- Syntactic ambiguity approaches with TAG
- Semantic ambiguity approaches

3 New: Semantic ambiguity approach with TAG
(4) Summary

Summary

The landscape of approaches to idiomatic MWEs from a TAG perspective:

\Rightarrow One approach for all types of MWEs?
\Rightarrow Connection between literal and idiomatic meaning?
\Rightarrow Multi-dimensional approach following Ernst (1981)?

Abeillé, Anne. 1995. The flexibility of French idioms: A representation with Lexicalized Tree Adjoining Grammar. In Martin Everaert, Erik-Jan van der Linden, André Schenk \& Rob Schreuder (eds.), Idioms: Structural and psychological perspectives, 15-42. Hillsdale, NJ: Lawrence Erlbaum Associates.
[2] Abeillé, Anne \& Owen Rambow. 2000. Tree Adjoining Grammar: An overview. In Anne Abeillé \& Owen Rambow (eds.), Tree Adjoining Grammars: Formalisms, linguistic analyses and processing (CSLI Lecture Notes 107), 1-68. Stanford, CA: CSLI Publications.
[3] Abeillé, Anne \& Yves Schabes. 1989. Parsing idioms in lexicalized TAGs. In Proceedings of the 4th conference on European chapter of the Association for Computational Linguistics (EACL '89), 1-9. Manchester, UK.
[4] Abeillé, Anne \& Yves Schabes. 1996. Non-compositional discontinuous constituents in Tree Adjoining Grammar. In Harry Bunt \& Arthur van Horck (eds.), Discontinuous constituency, 279-306. Berlin, Germany: Mouton de Gruyter.
[5] Bargmann, Sascha. 2015. Syntactically Flexible VP-Idioms and the N-after- N Construction. Poster at PARSEME's 5th general meeting in Iasi, Romania. http://typo.uni-konstanz.de/parseme/images/Meeting/2015-09-23-Iasi-meeting/WG1-BARGMANN-poster.pdf.
[6] Barsalou, Lawrence. 1992. Frames, concepts, and conceptual fields. In Adrienne Lehrer \& Eva Feder Kittey (eds.), Frames, fields, and contrasts: New essays in semantic and lexical organization, 21-74. Hillsdale, NJ: Lawrence Erlbaum Associates.
[7] Bresnan, Joan. 1982. The passive in lexical theory. In Joan Bresnan (ed.), The mental representation of grammatical relations, 40-65. Cambridge, MA: MIT Press.
[8] Cacciari, Christina \& Patrizia Tabossi (eds.). 1993. Hillsdale, NJ: Lawrence Erlbaum.
[9] Chomsky, Noam. 1980. Rules and representations. Oxford, UK: Basil Blackwell.
[10] Egan, Andy. 2008. Pretense for the complete idiom. Noûs 42(3). 381-409.
[11] Ernst, Thomas. 1981. Grist for the linguistic mill: Idioms and 'extra' adjectives. Journal of Linguistic Research 1. 51-68.
[12] Fillmore, Charles J. 1982. Frame semantics. In The Linguistic Society of Korea (ed.), Linguistics in the morning calm, 111-137. Seoul, South Korea: Hanshin Publishing.
[13] Gazdar, Gerald, Ewan Klein, Ivan A. Sag \& Geoffrey K. Pullum. 1985. Generalized Phrase Structure Grammar. Cambridge, MA: Harvard University Press.
[14] Goldberg, Adele. 2013. Constructionist approaches. In Thomas Hoffmann \& Graeme Trousdale (eds.), The Oxford handbook of Construction Grammar, 15-31. Oxford, UK: Oxford University Press.
[15] Jackendoff, Ray. 2008. Construction after construction and its theoretical challenges. Language 84(1). 8-28.
[16] Joshi, Aravind K., Leon S. Levy \& Masako Takahashi. 1975. Tree Adjunct Grammars. Journal of Computer and System Science 10. 136-163.
[17] Joshi, Aravind K. \& Yves Schabes. 1997. Tree-Adjoining Grammars. In Grzegorz Rozenberg \& Arto Salomaa (eds.), Handbook of formal languages, vol. 3, 69-124. Berlin, Germany: Springer.
[18] Kallmeyer, Laura \& Rainer Osswald. 2013. Syntax-driven semantic frame composition in Lexicalized Tree Adjoining Grammar. Journal of Language Modelling 1. 267-330.
[19] Kay, Paul \& Ivan A. Sag. To appear. A Lexical Theory of Phrasal Idioms. http://www1.icsi.berkeley.edu/~kay/idioms-submitted.pdf.
[20] Lichte, Timm \& Laura Kallmeyer. 2014. Transparency in multi-word expressions: An LTAG approach. Poster at PARSEME's 3rd general meeting in Frankfurt, Germany. http://typo.uni-konstanz.de/parseme/images/Meeting/2014-09-08-Frankfurt-meeting/WG1-WG2-LICHTE-KALLMEYER-poster.pdf.
[21] Lichte, Timm \& Laura Kallmeyer. 2015. Two ways of modelling idiomaticity as semantic ambiguity in LTAG. Poster at PARSEME's 4th general meeting in Valletta, Malta. http://typo.uni-konstanz.de/parseme/images/Meeting/2015-03-19-Malta-meeting/WG1-WG2-LICHTE-KALLMEYER- poster.pdf.
[22] Löbner, Sebastian. 2014. Evidence for frames from human language. In Frames and concept types. Application in language and philosophy (Studies in Linguistics and Philosophy 94), 23-67. Dordrecht: Springer.
[23] Matsuyama, Tesuya. 2004. The N after N construction: A constructional idiom. English Linguistics 21. 55-84.
[24] Mel'čuk, Igor A. 2015. Semantics: From meaning to text. David Beck \& Alain Polguère (eds.) (Studies in Language Companion Series 168). Amsterdam: John Benjamins.
[25] Müller, Stefan \& Stephen M. Wechsler. 2014. Lexical approaches to argument structure. Theoretical Linguistics 40(1-2). 1-76. http://hpsg.fu-berlin.de/~stefan/Pub/arg-st.html.
[26] Osswald, Rainer \& Robert D. Van Valin Jr. 2014. FrameNet, frame structure, and the syntax-semantics interface. In Thomas Gamerschlag, Doris Gerland, Rainer Osswald \& Wiebke Petersen (eds.), Frames and concept types (Studies in Linguistics and Philosophy 94), 125-156. Springer.
[27] Petersen, Wiebke. 2007. Representation of concepts as frames. The Baltic International Yearbook of Cognition, Logic and Communication 2. 151-170.
[28] Peterson, Robert R. \& Curt Burgess. 1993. Syntactic and semantic processing during idiom comprehension: Neurolinguistic and psycholinguistic dissociations. In Christina Cacciari \& Patrizia Tabossi (eds.), Idioms: Processing, structure, and interpretation, 201-225. Hillsdale, NJ: Lawrence Erlbaum.
[29] Pulman, Stephen G. 1993. The recognition and interpretation of idioms. In Christina Cacciari \& Patrizia Tabossi (eds.), Idioms: Processing, structure, and interpretation, chap. 11, 249-270. Hillsdale, NJ: Lawrence Erlbaum.
[30] Richter, Frank \& Manfred Sailer. 2009. Phraseological clauses in constructional HPSG. In Stefan Müller (ed.), Proceedings of the 16th international conference on Head-Driven Phrase Structure Grammar, University of Göttingen, Germany, 297-317. Stanford,CA: CSLI Publications.
[31] Riehemann, Susanne Z. 2001. A constructional approach to idioms and word formation. Stanford, CA: Stanford University Dissertation. http://doors.stanford.edu/~sr/sr-diss.pdf.
[32] Sailer, Manfred. 2000. Combinatorial semantics and idiomatic expressions in head-driven phrase structure grammar. Tübingen, Germany: Eberhard-Karls-Universität Tübingen PhD thesis. http://hdl.handle.net/10900/46191.
[33] Soehn, Jan-Philipp. 2006. Über Bärendienste und erstaunte Bauklötze - Idiome ohne freie Lesart in der HPSG. Frankfurt a. M.: Peter Lang.
[34] Wittenberg, Eva \& Maria Mercedes Piñango. 2011. Processing light verb constructions. The Mental Lexicon 6(3). 393-413.
[35] Wittenberg, Eva, Ray S. Jackendoff, Gina Kuperberg, Jesse Paczynski Martinand Snedeker \& Heike Wiese. 2014. The processing and representation of light verb constructions. In Asaf Bachrach, Isabelle Roy \& Linnaea Stockall (eds.), Structuring the argument. John Benjamins. http://www.jbe-platform.com/content/books/9789027270108.

