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The Aim, The Plan, The Proviso

• The Aim: The aim of  this talk is to lay the foundations for a frame-theoretic 
notion of  reduction in science. The realistic aim of  this talk is to lay the 

foundations for a correct account of  reduction in science. 

• The Plan:

Part I: The Classical Concept of  Reduction
Part  II: Three Objections
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Part  II: Three Objections
Part III: The Neo-Classical Concept and its Solutions
Part  IV: Liberalising the Classical Concept Further
Part   V: A Very Rough Sketch of  Reduction in Frame-Theoretic Terms

• The Proviso: One qualification that I will make from the outset is that our 
focus in this talk will be on diachronic inter-theory reduction.



Part I: 

The Classical Concept of Reduction
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The Classical Concept of Reduction



Derivability and Connectability

• The classical conception of  reduction goes back to Nagel (1961). According to 

this conception, a theory T reduces to a theory T´ if, and only if, two 
conditions are met: 

(i) connectability: for every term F in T, there is a term G that is constructible 

in T´ such that for any object a, Fa if, and only if, Ga

and 
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(ii) derivability: T is derivable from T´, potentially bridge laws B and potentially 
restrictive conditions A.

• Nagel identified two types of  reduction that satisfy the above explication, 
namely homogenous and heterogeneous (a.k.a. ‘inhomogenous’) reductions.



Homogenous Reductions

• Homogeneous reductions are those where the reduced theory’s vocabulary is 
either included in, or at least can be defined in terms of, the reducing theory’s 
vocabulary. 

Example: The reduction of  Galileo’s law of  free fall to Newtonian physics. 
Since the former assumes that acceleration is constant at or near the Earth’s 
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Since the former assumes that acceleration is constant at or near the Earth’s 
surface while the latter takes it to be proportional to the force acting on the 
given body, a restrictive condition is required for the derivation. This takes the 
form of  the constant g, which denotes the ‘average’ acceleration imparted on 
objects with small mass by the Earth’s local gravitational field.



Heterogenous Reductions

• Heterogeneous reductions require bridge laws to meet the connectability 
condition. Bridge laws connect the vocabulary of  the reduced and reducing 
theories so that derivability can be achieved. In other words, bridge laws come 
into play only in heterogeneous reductions.

Example: The reduction of  the Boyle-Charles law to statistical mechanics. The 
required bridge law connects temperature (a concept in thermodynamics) with 
mean kinetic energy (a concept in statistical mechanics).
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NB: The derivations are often long to go through and involve a number of  
assumptions. The most important and controversial step is the introduction of  a 
bridge law, as this is not included in the original resources of  the reducing theory. 



Part II: 

Three Objections
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Three Objections



Questioning Derivability

• A number of  objections have been raised against the classical conception of  
reduction. We will be looking at three such objections. They all appear in 
Feyerabend (1962) but for more direct and indirect critiques see Kuhn (1962), 

Field (1973) among others.

• The first one concerns the derivability requirement. Feyerabend points out that in 
the great majority of  cases in actual science this requirement cannot be met 
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the great majority of  cases in actual science this requirement cannot be met 
because the reduced theory and the reducing theory are inconsistent.

Example: Strictly speaking, we cannot derive Galileo’s law of  free fall from 
Newtonian physics for, even when the restrictive condition of  considering 
objects at or near the Earth’s surface is taken into account, the values predicted 
by the two theories are different. In other words the two theories are 
inconsistent.



Questioning Semantic Invariance

• The second objection is related to the first and it concerns the variance of  
meaning across theories. Feyerabend argued that if  meaning holism holds, then 
differences in the semantic content of  theories imply differences in the 
semantic content of  all their terms. This coupled with the view that the 
reference of  a term is determined by its semantic content entailed that a term 
appearing in two theories cannot be referring to the same object. Thus the 
connectability condition cannot hold.

9

connectability condition cannot hold.

Example: Although the concept mass appears in both classical mechanics and 
the special theory of  relativity they do not mean exactly the same thing. In the 
latter case (relativistic) mass is not an invariant quantity but increases as the 
velocity of  an object nears that of  the velocity of  light.



Questioning the Bridge Laws

• The third objection or concern is about the status of  bridge laws. Are these 
supposed to be conventional stipulations, analytical truths or synthetic (i.e. 
empirical) truths and why? If  synthetic, what is the warrant for endorsing them? 
Moreover, are they supposed to be identity claims, equating one class of  objects 

with another, or is it enough that they merely correlate the two classes?
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• Nagel (1961) appears to be unclear regarding what he considers to be correct 
answers to these questions. But surely it is clear that such laws cannot be mere 
conventional stipulations as that would trivialise the whole issue of  reduction. 
Even so, this still leaves us with quite a few options.



Part III: 

The Neo-Classical Concept 
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The Neo-Classical Concept 

and its Solutions



The Neo-Classical Account
• Solutions to these and other objections are discussed in various places. In what 

follows we focus on Schaffner (1967; 1976) and Dizadji-Bahmani et al. (2010). 
The latter builds on the neo-classical account of  reduction articulated Schaffner, 
thereby offering the most sophisticated reply to the above objections up to now.

• Schaffner’s main innovation was to point out that what gets reduced is not the 
original theory T but a corrected version T* that is strongly analogous to T. We 

get T* from T´ after applying the necessary restrictive conditions and bridge laws.

• Contra Feyerabend, it can thus be argued that derivability is maintained, even 
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• Contra Feyerabend, it can thus be argued that derivability is maintained, even 

though what gets derived from T´ is T*, not T. And if  derivability is maintained 
that means that semantic invariance is maintained (at least in so far as the bridge 

laws set up semantic equivalences) – as before only between T´ and T*.

• On the subject of  bridge laws, Schaffner insists that such laws or ‘reductive 
functions’, as he calls them, must establish a functional relation between the terms 

of  T* and T´ such that: (i) the entities to which they apply are the same and (ii) 
the predicates that these entities satisfy are the same. He takes bridge laws to be 
synthetic identity claims. Nagel (1974) also takes the synthetic stance.



The Neo-Classical Account: Strong Analogies

• Obviously, the success or failure of  this solution hangs on the notion of  strong 
analogy. Alas, Schaffner is cagey on this front. Here are two telling quotes:

“This last point [about strong analogy] is perhaps the most programmatic, for not 
much work of  any import has been done on the logic of  analogy” (1967, p. 146). 
He then cites Hesse (1966) “for some interesting beginnings” on the topic.

“These relations of  approximate equality, close agreement, and strong analogy 
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“These relations of  approximate equality, close agreement, and strong analogy 
have yet to find formally precise characterizations, and to date represent informal 
aspects of  a reduction. These elements in the reduction should not, however, be 
taken as implying that the relation between the reducing theory and reduced 
theory, in its corrected form, is vague or imprecise.” (1976, p. 617).

• It is noteworthy that Nagel (1974) also backs the idea of  ‘good approximations’ 
when the reduced theory cannot be directly derived from the reducing theory, 
bridge laws and restrictive conditions. 



Extending the Neo-Classical Account

• Dizadji-Bahmani et al. make two crucial modifications to Schaffner’s model 
calling the resulting model the ‘Generalised Nagel-Schaffner model’ (GNS): 

(1) It is not necessary that every term of  T* be connected to a term in T´. 

´
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(2) It is not necessary that a term of  T* be connected to exactly one term in T´. 

• The first one allows the modeling of  partial reductions. No clear rationale is 
provided for it, though it is obvious they want to model cases where “we can 
deduce only some laws (or central statements)” of  the reduced theory T* (p. 399).



Extending the Neo-Classical Account (2)

• The second one allows the modeling of  multiply realisable relations between the 
reduced and the reducing theories. The rationale provided for it is the following: 
“Reductions are desirable first and foremost for two other reasons: consistency 
and confirmation. That is, TF [the reducing theory] and TP [the reduced theory] 
have to be consistent, and evidence confirming TF also has to confirm TP and vice 

versa” (p. 405).
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NB: Actually what Dizadji-Bahmani et al. need to say here is that T and T*, or as 

they denote them TF and TP* stand in such a relation.

Example: “There simply is no reason to think that, say, ‘temperature’ for gas 
being co-extensional with mean kinetic energy precludes it from being co-
extensional with a completely different micro-property in other systems” (p. 406).



Extending the Neo-Classical Account: Bridge Laws

• Dizadji-Bahmani et al. go on to say: “Reductions that achieve nothing but 
consistency and confirmation are bona fide reductions. These aims, and this is the 
crucial point, can be achieved without bridge laws being identity statements. In 
fact, mere de facto correlations between properties are all that is required for the 
needs of  reduction, and we can remain agnostic about the question of  whether 

bridge laws express anything beyond mere correlation” (p. 405).
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bridge laws express anything beyond mere correlation” (p. 405).

NB: This view is in direct opposition to that taken by Sklar: “the place of  
correlatory laws is taken by empirically established identifications of  two classes 
of  entities. Light waves are not correlated with electromagnetic waves, for they are 

electromagnetic waves” (1967, p. 120).



Part IV: 

Liberalising the Classical Concept Further
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Liberalising the Classical Concept Further



A Little Mistake
• We support the liberalisation of  the notion of  reduction carried out by Dizadji-

Bahmani et al. Indeed we think that in order to capture all the subtleties involved 

in reductive relations the notion must be liberalised further.

• But before we embark on this project, it is important to point out a mistake in 
Dizadji-Bahmani et al. Their assertion that it is not necessary that every term of  

T* be connected to a term in T´ is strictly speaking false. That’s because for there 
to be a derivation of  T* from T´ (via bridge laws) all the terms of  T* must be 
connected to some terms of  T´. 
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connected to some terms of  T´. 

• What they really must mean here is that it is not necessary that every term of  T, 

the original theory, be connected to a term in T´ (or even T*). But this would be 
a moot point as, according to them, the bridge laws connect neither T and T* nor 

T and T´ but rather T* and T´.

“Schaffner’s presentation of  bridge laws suggests that he takes it to be the case 
that, in a successful reduction, (a) every term of  TP* is connected to a term of  
TF, and that (b) a term of  TP* is connected to exactly one term of  TF (see, for 
instance, 1967, pp. 139–140). We take neither of  these conditions to be necessary 
for a successful reduction” (p. 399).



Not every T´ term needs to be connected to T*

Example: The concept of  color charge in quantum chromodynamics has no 
connection to concepts in (corrected) classical physics. It is a property of  quarks 
and gluons, elementary particles that were not even thought to exist within 
classical physics. Indeed, the property has nothing to do with color in vision and 
very little to do with classical conceptions of  charge. Rather it is a property 
responsible for the strong nuclear interaction, an interaction that takes place at 

• It is not necessary that every term of  T´ be connected to a term of  T* since T´
may have additional terms in its vocabulary.
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the very small level of  quarks, and helps explain how the nucleus of  an atom 

does not pull apart.

NB: This is a rather trivial and minor point since valid derivations need not 
involve the whole content of  a reducing theory. And, of  course, if  only some 

content is derived then only some terms may be involved in the derivation.



Not every T´ term needs to be connected 
to exactly one T* term

Example: In relativistic physics the concept of  energy is connected not only to 
the classical conception energy but also to that of  rest (/inertial) mass via the 

relativistic mass-energy equivalence principle:

• It is not necessary that a term of  the reducing theory T´ that is involved in the 
reduction to be directly connected to exactly one term of  the corrected theory T*

or even indirectly connected (via analogy, not bridge laws) to exactly one term of  

the original theory T.

20

relativistic mass-energy equivalence principle:

E = moγγγγc2

where E is the total energy of  the system, mo is its rest mass, γ the Lorentz factor
and c the speed of  light.



There may be Two or More Reducing Theories
• Indeed it is not even necessary that a term of  the corrected T* / original theory 

T be directly / indirectly connected to terms in exactly one reducing theory T´.

• Typically successor theories unify existing domains of  phenomena as well as new 
ones. For example, quantum physics can help explain the covalent bonding of  

molecules but it can also explain what happens in sub-nucleus interactions. 

• At the same time, a successor theory need not unify all existing domains of  
phenomena. In the case at hand, quantum physics does not have anything to say 
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Example: The concept of  mass appears in both quantum and relativistic physics. 

phenomena. In the case at hand, quantum physics does not have anything to say 
about gravitational phenomena. That task falls to the general theory of  relativity. 
Thus, it should not be expected that a term that appears in T* or T to be directly  

/ indirectly connected to exactly one reducing theory T´.

NB: As already noted, there is something missing from quantum physics, namely 
a description of  gravitational interactions. That’s why physicists are currently 
working on quantum gravity. The hope is that a theory will emerge that unifies 
gravitational phenomena with phenomena relating to the other three forces.



Or None at All
• Some parts of  old theories are genuinely successful but cannot be connected to 

any existing theory. Hans Radder (1996, p. 63) offers one such example in the 
guise of  Poisseuille’s law. The law cannot be derived from QM accounts of  fluids. 
It seems to be a bona fide case of  Kuhn loss – see Votsis (2011).
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Poiseuille’s law determines an (nearly) incompressible fluid’s rate of  laminar 
flow Q along a tube as a relation between the following quantities: the fluid's 

viscosity (measure of  resistance) η, the radius r and length L of  the tube and the 
pressure difference between the tube's two ends P. 

Q = πr4P/8ηL



Strongly Analogous Relations

• Despite their helpful modifications to the neo-classical model, Dizadji-Bahmani

et al. leave us in the blind concerning the notion of  strong analogy.

“Being strongly analogous is a contextual relation, and we should not expect 
there to be a general theory of  analogy... it is the particular science at stake that 
has to provide us with a criterion of  relevant similarity in the particular context” 
(2010, p. 409).
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• Notice that by making T* satisfy the original conditions of  reducibility, the 
burden of  the whole reduction is put on the relationship between T* and T. So, it 
is absolutely crucial to provide a crisp and defensible account of  the notion of  

‘strongly analogous’.

• In other words, throwing light on the notion of  ‘strongly analogous’ is a major 
sticking point in accepting the neo-classical model, at least as it is currently 

formulated.



Degrees of Analogousness

• Our proposal is to allow gradations in the analogousness of  reductive relations. 
That is to say, the more non-trivial content continuity between T* and T, the 

stronger the analogy between them.

• First of  all, note that requiring all the content of  a theory T to be perfectly 
analogous to T* clearly sets the bar too high. That’s only the limit case.

• Why advocate a graded approach?
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• So, if  we DO NOT want to turn analogousness into a trivially false affair, we 
must require less content continuity, i.e. we must lower the bar.

• Once the decision is made to lower the bar of  what counts as an admissible 
level of  analogousness , the question becomes where to draw the line.

• Ideally, we would want to find a principled way to do this. For example, we 
could require that at least some essential features of  T* are analogous to some 
essential features of  T.



Avoiding Arbitrary Line-Drawing
• Proposals like this are ultimately indefensible. To see why this is the case, 

consider some (non-trivial) content of  a theory which, as it so happens, 
represents its target system perfectly. Any deviation from this content – in terms 
of  removing or changing but not adding content – means a less than perfect 
match between that content and the target system. So any such content (either 
essential or inessential) affects judgments of  correspondence between the theory 
and the world. But the same holds for the correspondence between theories. 
Thus, no content should be ignored in assessing the level of  reduction.
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• Punch-line: Instead of  drawing the line in an arbitrary way, it is better to 
embrace all forms of  (non-trivial) continuity as equally legitimate albeit of  
different strengths.

• Broader Implications: When claims about reduction are used as means to argue 
for or against scientific realism, progress in science, etc. then the presence or 
absence of  strongly analogous relations is a more pressing matter. But even in 
those debates the strictness with which we must judge the strength of  the 
analogousness is moderated by the fact that there need only be a general trend 
towards the cumulativity of  scientific knowledge.



Part V: 

A Very Rough Sketch of Reduction 
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A Very Rough Sketch of Reduction 

in Frame-Theoretic Terms 



Frame Theory: The Basics

• A frame is a hierarchical structure that represents ordinary and scientific 
concepts by a system of  attributes (Barsalou 1992).

• The nodes of  a given frame may themselves be analysed into further frames. 
This feature makes frame theory a recursive system.

• In two recent papers, Votsis and Schurz (2011) and Schurz and Votsis 
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• Consider the following frame for the concept BIRD taken from Andersen, 
Barker and Chen (2006). 

• In two recent papers, Votsis and Schurz (2011) and Schurz and Votsis 
(forthcoming) we employed the theory of  frames to illustrate a certain 
amount of  structural continuity between successive scientific theories.



Frame Theory: The Basics (2)

Bird

Superordinate
Concept

Subordinate
Concept

Water Bird

Land Bird

Beak Round

WebbedFoot

Attribute Value

Beak Pointed

ClawedFoot
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Foot

Concept

Tarsus

Skin

Attribute Value

Rounded

Flattened

Horny

Leathery

Nail
Sharp

Dull

ClawedFoot



Why Frame Theory?

• One of  frame theory’s strengths is its ability to lay bare the inner structure of  
scientific concepts. This facilitates the task of  comparing scientific theories 
because one can examine with relative ease whether frame-theoretically 
explicated concepts, their attributes and their values share structure. Such 
comparisons can reveal to what extent, if  at all, two or more concepts are 
continuous and whether these concepts are incompatible and even radically 
incommensurable.
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• As philosophers of  science we find this ability very useful because one of  the 
central aims of  our discipline is to discover how scientific concepts of  
successive theories (and their respective ontologies) are related.

• As participants in the debate on reduction – and other cognate debates, e.g. the 
scientific realism debate – we are particularly interested to find out whether the 
relations (or the lack of  relations) between the scientific concepts of  
successive theories uphold a strong reductive trend in science.



Reduction as Mappings Between Frames

• Our plan is to express the (suitably modified) neo-classical model of  reduction in 
frame-theoretic terms. If  each theory or theory-part involved in a reductive claim 
is expressible in terms of  a frame hierarchy, we want to model the reductive 
relations between such hierarchies.

• As already noted, there are two steps in establishing a reductive relation between 
two theories in the neo-classical tradition. First, one must derive a corrected 

version T* from T´. Second, one must show that there is an analogy of  a certain 
strength between T* and T. How are we to model these steps in frame-theory?
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strength between T* and T. How are we to model these steps in frame-theory?

• A first (rough) approximation is that they can be modeled as follows: 

Step 1: There is an isomorphic mapping between part of  the structure of  the 

frame hierarchy of  T´ (after the bridge laws are applied) and the whole structure 
of  the frame hierarchy of  T*.

Step 2: There is a transformation function from the frame hierarchy of  T to that 
of  T* that keeps some of  the (non-trivial) content of  the former intact. The 
more that remains invariant under the transformation function the stronger the 
analogy between the frame hierarchies of  T and T*.



The Mapping Between Frame Hierarchies T´ and T*

• For the specific derivability relation to hold between T´ (plus the bridge laws) and 
T*, the content of  T* must be included in the content of  T´ (plus the bridge 
laws). At the same time, the content of  T´ must exceed that of  T* otherwise we 
would not need to talk about T*, i.e. we would instead talk directly about the 

relationship between T´ and T.

• We can express the content inclusion claim via an isomorphism between part of  

the frame hierarchy of  T´ (after the bridge laws are taken into account) and the 
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• In frame-theoretic terms this means that when compared to the frame hierarchy 

of  T´, the frame hierarchy of  T* will possess less of  (one or more of) the 
following: frame levels, concepts, attributes, values and the corresponding 

constraints (e.g. value-attribute, attribute-attribute and value-value constraints).

the frame hierarchy of  T´ (after the bridge laws are taken into account) and the 
whole of  the frame hierarchy of  T* such that the values of  any mapped 
attributes are not altered (but some values can be removed). Alternatively, we can 

talk about the embedding of  T* into T´ (after the bridge laws are accounted for).



A Simple Example: Embedding T* into T´

X

Superordinate
Concept

A′
a1

a2

a3

B′
b1

b2

b3

c1

Y

Subordinate
Concepts

Attributes Values

W′ (in T′)
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C′
c1

c2

c3
Z

X
A*

a1

a2

B*
b1

b2

C*
c1

c2

Y
W* (in T*)



The Mapping Between Frame Hierarchies T and T*
• The relation between T and T* is more complicated. Here the relation we want 

to express is that of  various degrees of  analogousness. 

• It was pointed out already that this can be achieved via a transformation rule 
from the frame hierarchy of  T to the frame hierarchy of  T* that keeps some of  
the (non-trivial) content of  the former intact. In general, the more that remains 
invariant under the transformation rule the stronger the analogy between the two 
frame hierarchies.
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• In frame-theoretic terms this means that the two frame hierarchies of  T and of  
T* will be continuous in at least some non-trivial respects. Even when none of  
the values of  the mapped attributes are preserved, there may be a fairly strong 
analogousness in that the values are approximately the same. But of  course they 

need not be since analogousness can come in various strengths.

NB: Ideally we want to make exact claims about the strength of  the 
analogousness between frame hierarchies. To do that a metric is required. For any 
proposed metric to be adequate, it will need to yield judgments that do not 
change if  we translate each frame-hierarchy into a notational variant.



A Simple Example: Transforming T into T*

Φ

Superordinate
Concept

A
α1

α2

B
β1

β2

C
γ1

γ2 Σ

Ψ

Subordinate
Concepts

Attributes Values

W (in T)

δ
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X
A*

a1

a2

B*
b1

b2

C*
c1

c2

Y
W* (in T*)

D
δ1

δ2 Ω



Thank you for Listening!

35


