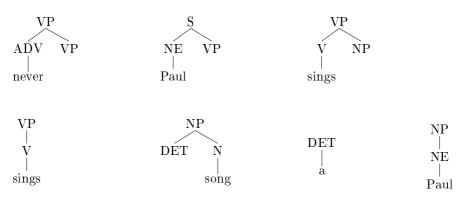
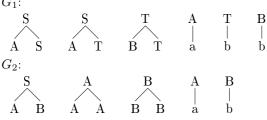
DGfS-CL Fall School 2011: Introduction to Tree Adjoining Grammar


Exercises for the first week

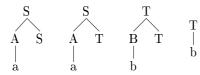
- 1. (a) Let G be a context-free grammar with the following rewriting rules:

Give a TSG which strongly lexicalizes this CFG. Why is the resulting TSG not linguistically satisfying?

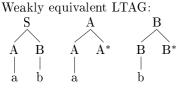

Solution:

The following TSG lexicalizes G. Note that the subcategorization frames are no longer localized:

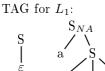
(b) Consider the following TSGs:

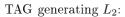

We assume that these TSGs have both a start symbol, namely S. I.e, only trees with root symbol S are in the tree language.

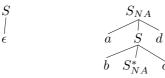
i. What are the string languages generated by the two TSGs? Solution:


Both generate the same language, namely $\{a^n b^k \mid n, k \ge 1\}$.

ii. Decide for each of the TSGs whether it can be strongly lexicalized, i.e., whether a lexicalized TSG exists that generates the same set of trees. If so, give such a TSG. If not, explain why not and give a weakly equivalent LTAG.
Solution:


 G_1 can be strongly lexicalized:


 G_2 cannot even be weakly lexicalized, since lexicalizing the S tree would inhibit the adding of either more $b{\rm s}$ or $a{\rm s}.$



- 2. Let $L_1 := \{a^n b^n c^n \mid n \ge 0\}, L_2 := \{a^n b^n c^n d^n \mid n \ge 0\}.$
 - (a) Give a TAG (with adjunction constraints) that generates L_1 . Solution:

(b) Give a TAG (with adjunction constraints) that generates L_2 . Solution:

3. (a) Generalize the CYK algorithm in order to make it work for a TAG which has elementary trees with more than two daugthers per node. Hint: You have to exchange the deduction rules *MoveUnary* and *MoveBinary* for a single new rule, which you might want to call *MoveUp*. Solution:

Replace the deduction rules **move-unary** and **move-binary** with a single new rule **move-up**:

Move-up:
$$\frac{[\gamma, (p \cdot 1)_{\top}, i_0, f_{11}, f_{12}, i_1], \dots, [\gamma, (p \cdot m)_{\top}, i_{m-1}, f_{m1}, f_{m2}, i_m]}{[\gamma, p_{\perp}, i_0, f_{11} \oplus \dots \oplus f_{m1}, f_{12} \oplus \dots \oplus f_{m2}, i_m]}$$

As a side condition, we require that the node address $p \cdot (m+1)$ does not exist in γ .

- 4. Give the tree sets of **two non-local MCTAGs** that derive the following sentences. Try to give a linguistically sound analysis, and say why it is sound, and why it is non-local (if that is the case). You do **not** have to use features! Also provide the derivation tree and the derived tree.
 - (a) Extraction out of a complex NP:
 - (1) [Which painting]_i did you see a picture of $__i$?
 - (b) Extraposition of a relative clause:
 - (2) Somebody_i lives nearby [who_i has a CD burner].