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Overview: First week

© Going beyond Context-Free Grammar (Monday)
© Formal definition of TAG (Tuesday)

© TAG and natural languages (Wednesday)

© TAG parsing (Thursday)

© Extensions of TAG (Friday)

Natural Language Syntax with TAG 2/34



Overview: Second week

© Principles underlying the shape of elementary trees
© XTAG-analyses of raising/control

© XTAG-analyses of extraction

© How to implement an LTAG

© How to run and test an LTAG
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Outline

@ Organizational issues

© CFG and natural languages
@ Context-Free Grammars
o Are Natural Languages Context-Free?
@ Mild Context-Sensitivity

© Tree Substitution Grammar
@ Definition

@ Properties

@ Adjunction
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Organizational issues

@ Course web page:
http://www.sfb991.uni-duesseldorf.de/a02/dgfs-11
@ Requirements for obtaining 4 ETCS credits:

@ Participation in each class

o Solving at least 75% of the exercises

o Writing a short essay (4 pages) or solving an implementation
task
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Context-Free Grammars

Context-Free Grammar (CFG)

@ Disjoint sets of terminals and non-terminals
@ A non-terminal start symbol

@ A set of rewriting rules stating how to replace a non-terminal
by a sequence of non-terminal and terminal symbols.
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Context-Free Grammars

Context-Free Grammar (CFG)

@ Disjoint sets of terminals and non-terminals
@ A non-terminal start symbol

@ A set of rewriting rules stating how to replace a non-terminal
by a sequence of non-terminal and terminal symbols.

S—aSb S —ab

Generates the string language {a"b" | n > 1}.
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CFG language

Definition (CFG language)
Let G=(N,T,P,S) be a CFG. The (string) language L(G) of G
is the set {w € T*|S = w} where

o forw,w' € (NUT)*: w=w iffthereisa A— o € P and
there are v,u € (NU T)* such that w = vAu and w' = vau.
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CFG language

Definition (CFG language)
Let G=(N,T,P,S) be a CFG. The (string) language L(G) of G
is the set {w € T*|S = w} where
o forw,w' € (NUT)*: w=w iffthereisa A— o € P and
there are v,u € (NU T)* such that w = vAu and w' = vau.
o = s the reflexive transitive closure of = :

o w2 wforallwe (NUT)*, and
o forall w,w' € (NUT)*: w= w' iff there is a v such that

w=vandv'S w.
o forallw,w' € (NUT)*: w = w' iff there is a i € N such that

4 /
w = w'.
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CFG language

Definition (CFG language)

Let G=(N,T,P,S) be a CFG. The (string) language L(G) of G
is the set {w € T*|S = w} where

o forw,w' € (NUT)*: w=w iffthereisa A— o € P and
there are v,u € (NU T)* such that w = vAu and w' = vau.

@ = s the reflexive transitive closure of = :
o w2 wforallwe (NUT)*, and
o forall w,w' € (NUT)*: w= w' iff there is a v such that
w=vandv"S w.
o forallw,w' € (NUT)*: w = w' iff there is a i € N such that

4 /
w = w'.

A language is called context-free iff it is generated by a CFG.
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Context-Free Languages

Context-Free Languages (CFLs)
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Context-Free Languages

Context-Free Languages (CFLs)

o can be recognized in polynomial time (O(n?));

Natural Language Syntax with TAG 8/34



Context-Free Languages

Context-Free Languages (CFLs)
o can be recognized in polynomial time (O(n?));

@ are accepted by push-down automata;

Natural Language Syntax with TAG 8/34



Context-Free Languages

Context-Free Languages (CFLs)

o can be recognized in polynomial time (O(n?));
@ are accepted by push-down automata;

@ have nice closure properties (e.g., under homomorphisms,
intersection with regular languages . ..);

Natural Language Syntax with TAG 8/34



Context-Free Languages

Context-Free Languages (CFLs)

o can be recognized in polynomial time (O(n?));
@ are accepted by push-down automata;

@ have nice closure properties (e.g., under homomorphisms,
intersection with regular languages . ..);

@ satisfy a pumping lemma;

Natural Language Syntax with TAG 8/34



Context-Free Languages

Context-Free Languages (CFLs)

o can be recognized in polynomial time (O(n?));
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Context-Free Languages

Context-Free Languages (CFLs)

o can be recognized in polynomial time (O(n?));
@ are accepted by push-down automata;

@ have nice closure properties (e.g., under homomorphisms,
intersection with regular languages . ..);

@ satisfy a pumping lemma;

o can describe nested dependencies ({ww” |w € T*}).

[Hopcroft and Ullman, 1979]
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CFG Natural Language Example

Sam ple CFG Gtelescope

@ Nonterminals: {S, NP, VP, PP, N,V P D}
@ Terminals: {the, man, telescope, saw, girl, with, John}

@ Productions:;

S —- NP VP NP — DN
VP — VP PP|V NP N — NPP
PP — P NP

N — man|girl | telescope D  — the
N  — John P — with
V.  — saw
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Example derivation

S

D N V NP
| | / \
the man saw D N

| RN

the girl PP

N
with NP
D N

the telescope
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Example derivation

S
~
NP \VIP
/ \ *
\
D N \Y NP
| | / \
the man saw I|3 ITI
the girl

PP
|

with

NP

D
|

the

N
|

telescope
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Why CFG is not enough

... for modeling natural language:

@ only atomic non-terminals
Q only weak lexicalization

© expressive power is too low
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Why CFG is not enough (1) - Atomic non-terminals

S— NP VP NP — John NP — Mary
VP — V VP — V NP V — sleeps V — likes

Possible derivation:

S = NP VP = John VP = John V = John sleeps
S = John likes Mary

S = John sleeps Mary
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Why CFG is not enough (1) - Atomic non-terminals

S— NP VP NP — John NP — Mary
VP — V VP — V NP V — sleeps V — likes

Possible derivation:

S = NP VP = John VP = John V = John sleeps
S = John likes Mary

S = John sleeps Mary

How to treat subcategorization frames, number agreement, and
case marking?

J

(1) a. Kim depends on Sandy.
*Kim depends Sandy.
*Kim depends.
b. *The children depends on Sandy.
c. Kim depends on her/*she.
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Why CFG is not enough (1)

How to treat subcategorization frames, number agreement, and
case marking?

J

= encode the necessary information into the non-terminal
symbols

NP3sg_nom — John NP3sg _acc — Mary

V3sg—itr — sleeps Vasg—tr — likes

S— NPBsg—nom VP3sg—itr S— NPBsg—nom VP3sg—tr
VP3sg—itr — V3sg—itr VP3sg—tr — V3sg—tr NP3sg—acc

S = John likes Mary
S = John sleeps
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Why CFG is not enough (1)

How to treat subcategorization frames, number agreement, and
case marking?

= encode the necessary information into the non-terminal
symbols

NP3sg_nom — John NP3sg _acc — Mary

V3sg—itr — sleeps Vasg—tr — likes

S— NPBsg—nom VP3sg—itr S— NPBsg—nom VP3sg—tr
VP3sg—itr — V3sg—itr VP3sg—tr — V3sg—tr NP3sg—acc

S = John likes Mary
S = John sleeps

Drawback: Every possible combination of subcategorization frame,
number agreement, and case marking necessitates its own rule (let
alone the number of non-terminal symbols).
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Why CFG is not enough (1)

— grammar writing is tedious and error prone
= generalizations very hard to express

Remedy: feature structures instead of atomic non-terminal
symbols, unification, underspecification
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Why CFG is not enough (2) - Only weak lexicalization

Lexicalization

In a lexicalized grammar, each element of the grammar contains at
least one lexical item (terminal symbol).

Gi: S— S5, S—a
Gy: S — a5, S—a

@ Computationally interesting: the number of analyses for a
sentence is finite (if the grammar is finite of course).

@ Linguistically interesting: each lexical item allows for of
certain syntactic constructions, which one would like to
associate with it.
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Why CFG is not enough (2)

Lexicalizing a CFG:
@ Greibach normal form: A — aBy...Bx (k > 0)
@ weak lexicalization: string language is preserved

@ strong lexicalization: tree structure is preserved
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Why CFG is not enough (2)

Lexicalizing a CFG:
@ Greibach normal form: A — aBy...Bx (k > 0)
@ weak lexicalization: string language is preserved

@ strong lexicalization: tree structure is preserved

Can CFGs be lexicalized such that the set of trees remains the
same (strong lexicalization)?

No. Only weak lexicalization (same string language).
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Why CFG is not enough (3) - Expressivity

Is CFG powerful enough to describe all natural language phenomea? I
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Why CFG is not enough (3) - Expressivity

Is CFG powerful enough to describe all natural language phenomea?
Some NL constructions cannot be adequately described with a CFG.

Cross-serial dependencies in Dutch

(2) ... dat Wim Jan Marie de kinderen zag helpen leren zwemmen
... that Wim Jan Marie the children saw help teach swim
‘... that Wim saw Jan help Marie teach the children to swim’
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Why CFG is not enough (3)

(3) ... das mer em Hans es huus hilfed aastriiche
... that we Hansp,: houseac helped paint
‘... that we helped Hans paint the house'
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Why CFG is not enough (3)

(3) ... das mer em Hans es huus hilfed aastriiche
... that we Hansp,: houseac helped paint
‘... that we helped Hans paint the house'

(4) ... das mer d’chind em Hans es huus 16nd hilfe
... that we the childrenac. Hansp,: houseacc let  help
aastriiche
paint

‘... that we let the children help Hans paint the house’
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Why CFG is not enough (3)

(3) ... das mer em Hans es huus hilfed aastriiche
... that we Hansp,: houseac helped paint
‘... that we helped Hans paint the house'

(4) ... das mer d’chind em Hans es huus 16nd hilfe
... that we the childrenac. Hansp,: houseacc let  help
aastriiche
paint

‘... that we let the children help Hans paint the house’

@ Swiss German uses case marking and displays cross-serial
dependencies.

@ [Shieber, 1985] shows that Swiss German is not context-free.
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Why CFG is not enough (3)

A formalism that can generate cross-serial dependencies can also
generate the copy language {ww | w € {a, b}*}.
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Why CFG is not enough (3)

A formalism that can generate cross-serial dependencies can also
generate the copy language {ww | w € {a, b}*}.

The copy language is not context-free. J

4

We need extensions of CFG in order to describe all NL phenomena!
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CFG: Mild context-sensitivity (1)

Idea [Joshi, 1985]: characterize the amount of context-sensitivity
necessary for natural languages.

<

Mildly context-sensitive formalisms
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CFG: Mild context-sensitivity (1)

Idea [Joshi, 1985]: characterize the amount of context-sensitivity
necessary for natural languages.

Mildly context-sensitive formalisms

© generate (at least) all CFLs,

© can describe a limited amount of cross-serial dependencies
(there is a n > 2 up to which the formalism can generate all
string languages {w" |w € T*}),

© are polynomially parsable, and

Q their string languages are of constant growth.
(the length of the words generated by the grammar grows in a
linear way, e.g., {a®" | n > 0} does not have that property)
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@ Elements of a CFG represent very small syntactic trees.
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TSG: Definition (1)

@ Elements of a CFG represent very small syntactic trees.

S

NP VP N
S NP VP

w vnp R
v’ NP
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TSG: Definition (1)

@ Elements of a CFG represent very small syntactic trees.

S

NP VP N
S NP VP

w vnp R
v’ NP

@ From a linguistic point of view, we would rather have entire
constructions as elementary building blocks.
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TSG: Definition (1)

@ Elements of a CFG represent very small syntactic trees.

S

NP VP N
S NP VP

w vnp R
v’ NP

@ From a linguistic point of view, we would rather have entire
constructions as elementary building blocks.

/S\
NP VP
Ve N
Y NP
likes
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TSG: Definition (2)

A Tree Substitution Grammar (TSG) is a set of finite labeled trees
called syntactic trees which have

@ internal nodes labeled with non-terminals, and

@ leaves labeled either with terminals or non-terminals.
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TSG: Definition (2)

A Tree Substitution Grammar (TSG) is a set of finite labeled trees
called syntactic trees which have

@ internal nodes labeled with non-terminals, and

@ leaves labeled either with terminals or non-terminals.

We build larger trees by substitution:
@ Pick a non-terminal leaf (substitution node)

@ Replace it with a tree the root node of which has the same
label
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TSG: Definition (3)

Substitution example

/S\
NP V
A / N\
) \Y NP
I A
likes
NP
NP 5 / \N
! t
John ,-‘e !
: girl
Dlet
the

Natural Language Syntax with TAG 23/34



TSG: Definition (4)

Definition (Tree Substitution Grammar)

A Tree Substitution Grammar (TSG) is a tuple G = (N, T, S, 1)
where

@ N, T are disjoint alphabets of non-terminal and terminal
symbols,
@ S € N s the start symbol,

@ | is a finite set of syntactic trees with labels from N and T.
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TSG: Definition (4)

Definition (Tree Substitution Grammar)

A Tree Substitution Grammar (TSG) is a tuple G = (N, T, S, 1)
where

@ N, T are disjoint alphabets of non-terminal and terminal
symbols,

@ S € N s the start symbol,

@ | is a finite set of syntactic trees with labels from N and T.

Every tree in | is called an elementary tree.

G is called lexicalized if every tree in | has at least one leaf with a
label from T.
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TSG: Definition (5)

TSG derivation step

@ select a node with a non-terminal label A,

@ pick a fresh instance of an elementary tree with root label A
from the grammar,

@ and substitute the node for the new tree.
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TSG: Definition (6)

Definition (TSG language)

Let G=(N,T,S,I) be a TSG.

Q We call a tree «y that can be derived from an instance of an
elementary tree . € | a derived tree in G.

Natural Language Syntax with TAG 26/34



TSG: Definition (6)

Definition (TSG language)

Let G=(N,T,S,I) be a TSG.
Q We call a tree «y that can be derived from an instance of an
elementary tree . € | a derived tree in G.

@ The tree language L1(G) of G is the set of all derived trees y
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TSG: Definition (6)

Definition (TSG language)

Let G=(N,T,S,I) be a TSG.
Q We call a tree «y that can be derived from an instance of an
elementary tree . € | a derived tree in G.
@ The tree language L1(G) of G is the set of all derived trees y
in G with root label S and only terminal leaf labels.

© For every tree vy with t1,. .., t, being the labels of the leaves
in v ordered from left to right, we define yield(v) = t; ... t,.
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TSG: Definition (6)

Definition (TSG language)

Let G=(N,T,S,I) be a TSG.
Q We call a tree «y that can be derived from an instance of an
elementary tree . € | a derived tree in G.

@ The tree language L1(G) of G is the set of all derived trees y
in G with root label S and only terminal leaf labels.

© For every tree vy with t1,. .., t, being the labels of the leaves
in v ordered from left to right, we define yield(v) = t; ... t,.

Q The string language of G is {w | there is a v € L1(G) such
that w = yield(~)}.
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TSG: Properties (1)

In spite of the larger domains of locality, the following holds:

Proposition (Equivalence of CFG and TSG)

CFG and TSG are weakly equivalent. Furthermore, except for some
relabeling of the nodes, they are even strongly equivalent.
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TSG: Properties (2)

Every CFG can be immediately written as a TSG with every
production being understood as a tree with a single root and a
daughter for every righthand side symbol
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TSG: Properties (2)

CFG = TSG

Every CFG can be immediately written as a TSG with every
production being understood as a tree with a single root and a
daughter for every righthand side symbol

TSG = CFG

In order to construct an equivalent CFG for a given TSG, we have
to encode the dependencies between nodes from the same tree
within the non-terminal symbols.

N
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TSG: Properties (3)

s S\ /S\
NP/ VP NP VP, S — NP VP,
VRN ~ V. NP ~ VP, =V, NP
Y NP J V., — likes
Iikes |ikes
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TSG: Properties (4)

@ TSGs are almost strongly equivalent to CFGs
@ Nevertheless they offer an extended domain of locality

— They capture more generalizations than CFGs!
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TSG: Properties (4)

@ TSGs are almost strongly equivalent to CFGs

@ Nevertheless they offer an extended domain of locality

— They capture more generalizations than CFGs!

@ TSGs are used in the context of data-oriented parsing (DOP)
[Bod, 1995].

o Lexicalized TSGs can be extracted from treebanks and used
for probabilistic parsing [Post and Gildea, 2009].

@ [Cohn et al., 2009] also induce Probabilistic Tree Substitution
Grammars from treebanks and use them successfully for
parsing.
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Adjunction (1)

Tree Adjoining Grammars (TAG)
[Joshi et al., 1975, Joshi and Schabes, 1997]:

@ Tree-rewriting grammar.

@ Extension of CFG that allows to replace not only leaves but
also internal nodes with new trees.

@ Can generate the copy language.
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Adjunction (1)

Tree Adjoining Grammars (TAG)
[Joshi et al., 1975, Joshi and Schabes, 1997]:

@ Tree-rewriting grammar.

@ Extension of CFG that allows to replace not only leaves but
also internal nodes with new trees.

@ Can generate the copy language.

TAG for the copy language

S Sna Sna
| - S b/ S
a
| I
5 S”,‘\,A\a St . b

N
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Adjunction (2)

TAG derivation of abab
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Adjunction (2)

TAG derivation of abab
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Adjunction (2)

TAG derivation of abab

S Pl
Gurvrrr NA ¢
P a
a S ~ *\
l [N Sha @
St & <|€ ;
o
Sna a” Sna
a/ é( ............ /SII\IA b/ é
S I O S
NA ! NA
| Sva b S*I N
€ a4
|
€
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