Introduction to Tree Adjoining Grammar
Natural Language Syntax with TAG

Wolfgang Maier and Timm Lichte
University of Diisseldorf

DGfS-CL Fall School 2011

1st week, 1st session

Aug 29, 2011
HEINRICH HEINE o
UNIVERSITAT DOSSELDORF SFB 991

Natural Language Syntax with TAG 1/34

Overview: First week

© Going beyond Context-Free Grammar (Monday)
© Formal definition of TAG (Tuesday)

© TAG and natural languages (Wednesday)

© TAG parsing (Thursday)

© Extensions of TAG (Friday)

Natural Language Syntax with TAG 2/34

Overview: Second week

© Principles underlying the shape of elementary trees
© XTAG-analyses of raising/control

© XTAG-analyses of extraction

© How to implement an LTAG

© How to run and test an LTAG

Natural Language Syntax with TAG 3/34

Outline

@ Organizational issues

© CFG and natural languages
@ Context-Free Grammars
o Are Natural Languages Context-Free?
@ Mild Context-Sensitivity

© Tree Substitution Grammar
@ Definition

@ Properties

@ Adjunction

Natural Language Syntax with TAG 4/34

Organizational issues

@ Course web page:
http://www.sfb991.uni-duesseldorf.de/a02/dgfs-11
@ Requirements for obtaining 4 ETCS credits:

@ Participation in each class

o Solving at least 75% of the exercises

o Writing a short essay (4 pages) or solving an implementation
task

Natural Language Syntax with TAG 5/34

http://www.sfb991.uni-duesseldorf.de/a02/dgfs-11

Context-Free Grammars

Context-Free Grammar (CFG)

@ Disjoint sets of terminals and non-terminals
@ A non-terminal start symbol

@ A set of rewriting rules stating how to replace a non-terminal
by a sequence of non-terminal and terminal symbols.

Natural Language Syntax with TAG 6/34

Context-Free Grammars

Context-Free Grammar (CFG)

@ Disjoint sets of terminals and non-terminals
@ A non-terminal start symbol

@ A set of rewriting rules stating how to replace a non-terminal
by a sequence of non-terminal and terminal symbols.

S—aSb S —ab

Natural Language Syntax with TAG 6/34

Context-Free Grammars

Context-Free Grammar (CFG)

@ Disjoint sets of terminals and non-terminals
@ A non-terminal start symbol

@ A set of rewriting rules stating how to replace a non-terminal
by a sequence of non-terminal and terminal symbols.

S—aSb S —ab

Generates the string language {a"b" | n > 1}.

Natural Language Syntax with TAG 6/34

CFG language

Definition (CFG language)
Let G=(N,T,P,S) be a CFG. The (string) language L(G) of G
is the set {w € T*|S = w} where

o forw,w' € (NUT)*: w=w iffthereisa A— o € P and
there are v,u € (NU T)* such that w = vAu and w' = vau.

Natural Language Syntax with TAG 7/34

CFG language

Definition (CFG language)
Let G=(N,T,P,S) be a CFG. The (string) language L(G) of G
is the set {w € T*|S = w} where
o forw,w' € (NUT)*: w=w iffthereisa A— o € P and
there are v,u € (NU T)* such that w = vAu and w' = vau.
o = s the reflexive transitive closure of = :

o w2 wforallwe (NUT)*, and
o forall w,w' € (NUT)*: w= w' iff there is a v such that

w=vandv'S w.
o forallw,w' € (NUT)*: w = w' iff there is a i € N such that

4 /
w = w'.

Natural Language Syntax with TAG 7/34

CFG language

Definition (CFG language)

Let G=(N,T,P,S) be a CFG. The (string) language L(G) of G
is the set {w € T*|S = w} where

o forw,w' € (NUT)*: w=w iffthereisa A— o € P and
there are v,u € (NU T)* such that w = vAu and w' = vau.

@ = s the reflexive transitive closure of = :
o w2 wforallwe (NUT)*, and
o forall w,w' € (NUT)*: w= w' iff there is a v such that
w=vandv"S w.
o forallw,w' € (NUT)*: w = w' iff there is a i € N such that

4 /
w = w'.

A language is called context-free iff it is generated by a CFG.

Natural Language Syntax with TAG 7/34

Context-Free Languages

Context-Free Languages (CFLs)

Natural Language Syntax with TAG 8/34

Context-Free Languages

Context-Free Languages (CFLs)

o can be recognized in polynomial time (O(n?));

Natural Language Syntax with TAG 8/34

Context-Free Languages

Context-Free Languages (CFLs)
o can be recognized in polynomial time (O(n?));

@ are accepted by push-down automata;

Natural Language Syntax with TAG 8/34

Context-Free Languages

Context-Free Languages (CFLs)

o can be recognized in polynomial time (O(n?));
@ are accepted by push-down automata;

@ have nice closure properties (e.g., under homomorphisms,
intersection with regular languages . ..);

Natural Language Syntax with TAG 8/34

Context-Free Languages

Context-Free Languages (CFLs)

o can be recognized in polynomial time (O(n?));
@ are accepted by push-down automata;

@ have nice closure properties (e.g., under homomorphisms,
intersection with regular languages . ..);

@ satisfy a pumping lemma;

Natural Language Syntax with TAG 8/34

Context-Free Languages

Context-Free Languages (CFLs)

o can be recognized in polynomial time (O(n?));
@ are accepted by push-down automata;

@ have nice closure properties (e.g., under homomorphisms,
intersection with regular languages . ..);

@ satisfy a pumping lemma;

o can describe nested dependencies ({ww” |w € T*}).

Natural Language Syntax with TAG 8/34

Context-Free Languages

Context-Free Languages (CFLs)

o can be recognized in polynomial time (O(n?));
@ are accepted by push-down automata;

@ have nice closure properties (e.g., under homomorphisms,
intersection with regular languages . ..);

@ satisfy a pumping lemma;

o can describe nested dependencies ({ww” |w € T*}).

[Hopcroft and Ullman, 1979]

Natural Language Syntax with TAG 8/34

CFG Natural Language Example

Sam ple CFG Gtelescope

@ Nonterminals: {S, NP, VP, PP, N,V P D}
@ Terminals: {the, man, telescope, saw, girl, with, John}

@ Productions:;

S —- NP VP NP — DN
VP — VP PP|V NP N — NPP
PP — P NP

N — man|girl | telescope D — the
N — John P — with
V. — saw

Natural Language Syntax with TAG 9/34

Example derivation

S

D N V NP
| | / \
the man saw D N

| RN

the girl PP

N
with NP
D N

the telescope

Natural Language Syntax with TAG 10/34

Example derivation

S
~
NP \VIP
/ \ *
\
D N \Y NP
| | / \
the man saw I|3 ITI
the girl

PP
|

with

NP

D
|

the

N
|

telescope

Natural Language Syntax with TAG

10/34

Why CFG is not enough

... for modeling natural language:

@ only atomic non-terminals
Q only weak lexicalization

© expressive power is too low

Natural Language Syntax with TAG 11/34

Why CFG is not enough (1) - Atomic non-terminals

S— NP VP NP — John NP — Mary
VP — V VP — V NP V — sleeps V — likes

Possible derivation:

S = NP VP = John VP = John V = John sleeps
S = John likes Mary

S = John sleeps Mary

Natural Language Syntax with TAG 12/34

Why CFG is not enough (1) - Atomic non-terminals

S— NP VP NP — John NP — Mary
VP — V VP — V NP V — sleeps V — likes

Possible derivation:

S = NP VP = John VP = John V = John sleeps
S = John likes Mary

S = John sleeps Mary

How to treat subcategorization frames, number agreement, and
case marking?

J

(1) a. Kim depends on Sandy.
*Kim depends Sandy.
*Kim depends.
b. *The children depends on Sandy.
c. Kim depends on her/*she.

Natural Language Syntax with TAG 12/34

Why CFG is not enough (1)

How to treat subcategorization frames, number agreement, and
case marking?

J

= encode the necessary information into the non-terminal
symbols

NP3sg_nom — John NP3sg _acc — Mary

V3sg—itr — sleeps Vasg—tr — likes

S— NPBsg—nom VP3sg—itr S— NPBsg—nom VP3sg—tr
VP3sg—itr — V3sg—itr VP3sg—tr — V3sg—tr NP3sg—acc

S = John likes Mary
S = John sleeps

Natural Language Syntax with TAG 13/34

Why CFG is not enough (1)

How to treat subcategorization frames, number agreement, and
case marking?

= encode the necessary information into the non-terminal
symbols

NP3sg_nom — John NP3sg _acc — Mary

V3sg—itr — sleeps Vasg—tr — likes

S— NPBsg—nom VP3sg—itr S— NPBsg—nom VP3sg—tr
VP3sg—itr — V3sg—itr VP3sg—tr — V3sg—tr NP3sg—acc

S = John likes Mary
S = John sleeps

Drawback: Every possible combination of subcategorization frame,
number agreement, and case marking necessitates its own rule (let
alone the number of non-terminal symbols).

Natural Language Syntax with TAG 13/34

Why CFG is not enough (1)

— grammar writing is tedious and error prone
= generalizations very hard to express

Remedy: feature structures instead of atomic non-terminal
symbols, unification, underspecification

Natural Language Syntax with TAG 14/34

Why CFG is not enough (2) - Only weak lexicalization

Lexicalization

In a lexicalized grammar, each element of the grammar contains at
least one lexical item (terminal symbol).

Gi: S— S5, S—a
Gy: S — a5, S—a

@ Computationally interesting: the number of analyses for a
sentence is finite (if the grammar is finite of course).

@ Linguistically interesting: each lexical item allows for of
certain syntactic constructions, which one would like to
associate with it.

Natural Language Syntax with TAG 15/34

Why CFG is not enough (2)

Lexicalizing a CFG:
@ Greibach normal form: A — aBy...Bx (k > 0)
@ weak lexicalization: string language is preserved

@ strong lexicalization: tree structure is preserved

Natural Language Syntax with TAG 16/34

Why CFG is not enough (2)

Lexicalizing a CFG:
@ Greibach normal form: A — aBy...Bx (k > 0)
@ weak lexicalization: string language is preserved

@ strong lexicalization: tree structure is preserved

Can CFGs be lexicalized such that the set of trees remains the
same (strong lexicalization)?

No. Only weak lexicalization (same string language).

Natural Language Syntax with TAG 16/34

Why CFG is not enough (3) - Expressivity

Is CFG powerful enough to describe all natural language phenomea? I

Natural Language Syntax with TAG 17/34

Why CFG is not enough (3) - Expressivity

Is CFG powerful enough to describe all natural language phenomea?
Some NL constructions cannot be adequately described with a CFG.

Natural Language Syntax with TAG 17/34

Why CFG is not enough (3) - Expressivity

Is CFG powerful enough to describe all natural language phenomea?
Some NL constructions cannot be adequately described with a CFG.

Cross-serial dependencies in Dutch

(2) ... dat Wim Jan Marie de kinderen zag helpen leren zwemmen
... that Wim Jan Marie the children saw help teach swim
‘... that Wim saw Jan help Marie teach the children to swim’

Natural Language Syntax with TAG 17/34

Why CFG is not enough (3)

(3) ... das mer em Hans es huus hilfed aastriiche
... that we Hansp,: houseac helped paint
‘... that we helped Hans paint the house'

Natural Language Syntax with TAG 18/34

Why CFG is not enough (3)

(3) ... das mer em Hans es huus hilfed aastriiche
... that we Hansp,: houseac helped paint
‘... that we helped Hans paint the house'

(4) ... das mer d’chind em Hans es huus 16nd hilfe
... that we the childrenac. Hansp,: houseacc let help
aastriiche
paint

‘... that we let the children help Hans paint the house’

Natural Language Syntax with TAG 18/34

Why CFG is not enough (3)

(3) ... das mer em Hans es huus hilfed aastriiche
... that we Hansp,: houseac helped paint
‘... that we helped Hans paint the house'

(4) ... das mer d’chind em Hans es huus 16nd hilfe
... that we the childrenac. Hansp,: houseacc let help
aastriiche
paint

‘... that we let the children help Hans paint the house’

@ Swiss German uses case marking and displays cross-serial
dependencies.

@ [Shieber, 1985] shows that Swiss German is not context-free.

Natural Language Syntax with TAG 18/34

Why CFG is not enough (3)

A formalism that can generate cross-serial dependencies can also
generate the copy language {ww | w € {a, b}*}.

Natural Language Syntax with TAG 19/34

Why CFG is not enough (3)

A formalism that can generate cross-serial dependencies can also
generate the copy language {ww | w € {a, b}*}.

The copy language is not context-free.)

Natural Language Syntax with TAG 19/34

Why CFG is not enough (3)

A formalism that can generate cross-serial dependencies can also
generate the copy language {ww | w € {a, b}*}.

The copy language is not context-free. J

4

We need extensions of CFG in order to describe all NL phenomena!

Natural Language Syntax with TAG 19/34

CFG: Mild context-sensitivity (1)

Idea [Joshi, 1985]: characterize the amount of context-sensitivity
necessary for natural languages.

<

Mildly context-sensitive formalisms

Natural Language Syntax with TAG 20/34

CFG: Mild context-sensitivity (1)

Idea [Joshi, 1985]: characterize the amount of context-sensitivity
necessary for natural languages.

<

Mildly context-sensitive formalisms

© generate (at least) all CFLs,

Natural Language Syntax with TAG 20/34

CFG: Mild context-sensitivity (1)

Idea [Joshi, 1985]: characterize the amount of context-sensitivity
necessary for natural languages.

Mildly context-sensitive formalisms

© generate (at least) all CFLs,

© can describe a limited amount of cross-serial dependencies
(there is a n > 2 up to which the formalism can generate all
string languages {w" |w € T*}),

Natural Language Syntax with TAG 20/34

CFG: Mild context-sensitivity (1)

Idea [Joshi, 1985]: characterize the amount of context-sensitivity
necessary for natural languages.

Mildly context-sensitive formalisms

© generate (at least) all CFLs,

© can describe a limited amount of cross-serial dependencies
(there is a n > 2 up to which the formalism can generate all
string languages {w" |w € T*}),

© are polynomially parsable, and

Natural Language Syntax with TAG 20/34

CFG: Mild context-sensitivity (1)

Idea [Joshi, 1985]: characterize the amount of context-sensitivity
necessary for natural languages.

Mildly context-sensitive formalisms

© generate (at least) all CFLs,

© can describe a limited amount of cross-serial dependencies
(there is a n > 2 up to which the formalism can generate all
string languages {w" |w € T*}),

© are polynomially parsable, and

Q their string languages are of constant growth.
(the length of the words generated by the grammar grows in a
linear way, e.g., {a®" | n > 0} does not have that property)

Natural Language Syntax with TAG 20/34

@ Elements of a CFG represent very small syntactic trees.

Natural Language Syntax with TAG 21/34

TSG: Definition (1)

@ Elements of a CFG represent very small syntactic trees.

S

NP VP N
S NP VP

w vnp R
v’ NP

Natural Language Syntax with TAG 21/34

TSG: Definition (1)

@ Elements of a CFG represent very small syntactic trees.

S

NP VP N
S NP VP

w vnp R
v’ NP

@ From a linguistic point of view, we would rather have entire
constructions as elementary building blocks.

Natural Language Syntax with TAG 21/34

TSG: Definition (1)

@ Elements of a CFG represent very small syntactic trees.

S

NP VP N
S NP VP

w vnp R
v’ NP

@ From a linguistic point of view, we would rather have entire
constructions as elementary building blocks.

/S\
NP VP
Ve N
Y NP
likes

Natural Language Syntax with TAG 21/34

TSG: Definition (2)

A Tree Substitution Grammar (TSG) is a set of finite labeled trees
called syntactic trees which have

@ internal nodes labeled with non-terminals, and

@ leaves labeled either with terminals or non-terminals.

Natural Language Syntax with TAG 22/34

TSG: Definition (2)

A Tree Substitution Grammar (TSG) is a set of finite labeled trees
called syntactic trees which have

@ internal nodes labeled with non-terminals, and

@ leaves labeled either with terminals or non-terminals.

We build larger trees by substitution:
@ Pick a non-terminal leaf (substitution node)

@ Replace it with a tree the root node of which has the same
label

Natural Language Syntax with TAG 22/34

TSG: Definition (3)

Substitution example

/S\
NP V
A / N\
) \Y NP
I A
likes
NP
NP 5 / \N
! t
John ,-‘e !
: girl
Dlet
the

Natural Language Syntax with TAG 23/34

TSG: Definition (4)

Definition (Tree Substitution Grammar)

A Tree Substitution Grammar (TSG) is a tuple G = (N, T, S, 1)
where

@ N, T are disjoint alphabets of non-terminal and terminal
symbols,
@ S € N s the start symbol,

@ | is a finite set of syntactic trees with labels from N and T.

Natural Language Syntax with TAG 24/34

TSG: Definition (4)

Definition (Tree Substitution Grammar)

A Tree Substitution Grammar (TSG) is a tuple G = (N, T, S, 1)
where

@ N, T are disjoint alphabets of non-terminal and terminal
symbols,
@ S € N s the start symbol,

@ | is a finite set of syntactic trees with labels from N and T.

Every tree in | is called an elementary tree.

Natural Language Syntax with TAG 24/34

TSG: Definition (4)

Definition (Tree Substitution Grammar)

A Tree Substitution Grammar (TSG) is a tuple G = (N, T, S, 1)
where

@ N, T are disjoint alphabets of non-terminal and terminal
symbols,

@ S € N s the start symbol,

@ | is a finite set of syntactic trees with labels from N and T.

Every tree in | is called an elementary tree.

G is called lexicalized if every tree in | has at least one leaf with a
label from T.

Natural Language Syntax with TAG 24/34

TSG: Definition (5)

TSG derivation step

@ select a node with a non-terminal label A,

@ pick a fresh instance of an elementary tree with root label A
from the grammar,

@ and substitute the node for the new tree.

Natural Language Syntax with TAG 25/34

TSG: Definition (6)

Definition (TSG language)

Let G=(N,T,S,I) be a TSG.

Q We call a tree «y that can be derived from an instance of an
elementary tree . € | a derived tree in G.

Natural Language Syntax with TAG 26/34

TSG: Definition (6)

Definition (TSG language)

Let G=(N,T,S,I) be a TSG.
Q We call a tree «y that can be derived from an instance of an
elementary tree . € | a derived tree in G.

@ The tree language L1(G) of G is the set of all derived trees y
in G with root label S and only terminal leaf labels.

Natural Language Syntax with TAG 26/34

TSG: Definition (6)

Definition (TSG language)

Let G=(N,T,S,I) be a TSG.
Q We call a tree «y that can be derived from an instance of an
elementary tree . € | a derived tree in G.
@ The tree language L1(G) of G is the set of all derived trees y
in G with root label S and only terminal leaf labels.

© For every tree vy with t1,. .., t, being the labels of the leaves
in v ordered from left to right, we define yield(v) = t; ... t,.

Natural Language Syntax with TAG 26/34

TSG: Definition (6)

Definition (TSG language)

Let G=(N,T,S,I) be a TSG.
Q We call a tree «y that can be derived from an instance of an
elementary tree . € | a derived tree in G.

@ The tree language L1(G) of G is the set of all derived trees y
in G with root label S and only terminal leaf labels.

© For every tree vy with t1,. .., t, being the labels of the leaves
in v ordered from left to right, we define yield(v) = t; ... t,.

Q The string language of G is {w | there is a v € L1(G) such
that w = yield(~)}.

Natural Language Syntax with TAG 26/34

TSG: Properties (1)

In spite of the larger domains of locality, the following holds:

Proposition (Equivalence of CFG and TSG)

CFG and TSG are weakly equivalent. Furthermore, except for some
relabeling of the nodes, they are even strongly equivalent.

Natural Language Syntax with TAG 27/34

TSG: Properties (2)

Every CFG can be immediately written as a TSG with every
production being understood as a tree with a single root and a
daughter for every righthand side symbol

Natural Language Syntax with TAG 28/34

TSG: Properties (2)

CFG = TSG

Every CFG can be immediately written as a TSG with every
production being understood as a tree with a single root and a
daughter for every righthand side symbol

TSG = CFG

In order to construct an equivalent CFG for a given TSG, we have
to encode the dependencies between nodes from the same tree
within the non-terminal symbols.

N

Natural Language Syntax with TAG 28/34

TSG: Properties (3)

s S\ /S\
NP/ VP NP VP, S — NP VP,
VRN ~ V. NP ~ VP, =V, NP
Y NP J V., — likes
Iikes |ikes

Natural Language Syntax with TAG 29/34

TSG: Properties (4)

@ TSGs are almost strongly equivalent to CFGs
@ Nevertheless they offer an extended domain of locality

— They capture more generalizations than CFGs!

Natural Language Syntax with TAG 30/34

TSG: Properties (4)

@ TSGs are almost strongly equivalent to CFGs

@ Nevertheless they offer an extended domain of locality

— They capture more generalizations than CFGs!

@ TSGs are used in the context of data-oriented parsing (DOP)
[Bod, 1995].

o Lexicalized TSGs can be extracted from treebanks and used
for probabilistic parsing [Post and Gildea, 2009].

@ [Cohn et al., 2009] also induce Probabilistic Tree Substitution
Grammars from treebanks and use them successfully for
parsing.

Natural Language Syntax with TAG 30/34

Adjunction (1)

Tree Adjoining Grammars (TAG)
[Joshi et al., 1975, Joshi and Schabes, 1997]:

@ Tree-rewriting grammar.

@ Extension of CFG that allows to replace not only leaves but
also internal nodes with new trees.

@ Can generate the copy language.

Natural Language Syntax with TAG 31/34

Adjunction (1)

Tree Adjoining Grammars (TAG)
[Joshi et al., 1975, Joshi and Schabes, 1997]:

@ Tree-rewriting grammar.

@ Extension of CFG that allows to replace not only leaves but
also internal nodes with new trees.

@ Can generate the copy language.

TAG for the copy language

S Sna Sna
| - S b/ S
a
| I
5 S”,‘\,A\a St . b

N

Natural Language Syntax with TAG 31/34

Adjunction (2)

TAG derivation of abab

Natural Language Syntax with TAG 32/34

Adjunction (2)

TAG derivation of abab

Natural Language Syntax with TAG 32/34

Adjunction (2)

TAG derivation of abab

S Pl
Gurvrrr NA ¢
P a
a S ~ *\
l [N Sha @
St & <|€ ;
o
Sna a” Sna
a/ é(............ /SII\IA b/ é
S I O S
NA ! NA
| Sva b S*I N
€ a4
|
€

Natural Language Syntax with TAG 32/34

Bod, R. (1995).

Enriching Linguistics with Statistics: Performance Models of Natural Language .

Number 1995-14 in University of Amsterdam ILLC Dissertation Series. Academische Pers,
Amsterdam, The Netherlands.

Cohn, T., Goldwater, S., and Blunsom, P. (2009).

Inducing compact but accurate tree-substitution grammars.
In Proceedings of HLT-NAACL 2009, pages 548-556, Boulder, Colorado.

Hopcroft, J. E. and Ullman, J. D. (1979).

Introduction to automata theory, languages and computation .
Addison Wesley.

Joshi, A. K. (1985).

Tree adjoining grammars: How much contextsensitivity is required ro provide reasonable structural
descriptions?

In Dowty, D., Karttunen, L., and Zwicky, A., editors, Natural Language Parsing, pages 206—250.
Cambridge University Press.

Joshi, A. K., Levy, L. S., and Takahashi, M. (1975).

Tree Adjunct Grammars.
Journal of Computer and System Science, 10:136-163.

Joshi, A. K. and Schabes, Y. (1997).

Tree-Adjoning Grammars.

In Rozenberg, G. and Salomaa, A., editors, Handbook of Formal Languages, pages 69-123.
Springer, Berlin.

Post, M. and Gildea, D. (2009).

Bayesian learning of a tree substitution grammar.
In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pages 45—48, Suntec,
Singapore.

@ Shieber, S. M. (1985).

Evidence against the context-freeness of natural language.
Linguistics and Philosophy, 8:333-343.

	Organizational issues
	CFG and natural languages
	Context-Free Grammars
	Are Natural Languages Context-Free?
	Mild Context-Sensitivity

	Tree Substitution Grammar
	Definition
	Properties

	Adjunction

