
Preproceedings of the 20th Conference on Formal Grammar

Annie Foret, Glyn Morrill, Reinhard Muskens and Rainer Osswald (eds.)

August 8–9th 2015, Barcelona

Preface

FG provides a forum for the presentation of new and original research on formal grammar, mathe-
matical linguistics and the application of formal and mathematical methods to the study of natural
language. Themes of interest include, but are not limited to:

• Formal and computational phonology, morphology, syntax, semantics and pragmatics

• Model-theoretic and proof-theoretic methods in linguistics

• Logical aspects of linguistic structure

• Constraint-based and resource-sensitive approaches to grammar

• Learnability of formal grammar

• Integration of stochastic and symbolic models of grammar

• Foundational, methodological and architectural issues in grammar and linguistics

• Mathematical foundations of statistical approaches to linguistic analysis

Previous Formal Grammar meetings were held in Barcelona (1995), Prague (1996), Aix-
en-Provence (1997), Saarbrücken (1998), Utrecht (1999), Helsinki (2001), Trento (2002), Vi-
enna (2003), Nancy (2004), Edinburgh (2005), Malaga (2006), Dublin (2007), Hamburg (2008),
Bordeaux (2009), Copenhagen (2010), Ljubljana (2011), Opole (2012), Düsseldorf (2013) and
Tübingen (2014).

The present volume collects the papers from the 20th Conference on Formal Grammar cele-
brated in Barcelona in 2015. This preproceedings comprises two invited contributions, by Robin
Cooper and Tim Fernando, and 9 contributed papers selected from 14 submissions.

We thank for support the local organisers of ESSLLI 2015, with which the conference was
colocated.

July 2015 Annie Foret
Glyn Morrill
Reinhard Muskens
Rainer Osswald

Program Committee

Alexander Clark King’s College London, UK
Berthold Crysmann CNRS - LLF, France
Denys Duchier Université d’Orleans, France
Nissim Francez Technion, Israel
Philippe de Groote Inria Nancy, France
Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf, Germany
Makoto Kanazawa National Institute of Informatics, Japan
Greg Kobele University of Chicago, USA
Robert Levine Ohio State University, USA
Wolfgang Maier Heinrich-Heine-Universität Düsseldorf, Germany
Stefan Müller Freie Universität Berlin, Germany
Mark-Jan Nederhof University of St Andrews, UK
Christian Retoré LIRMM - Université Montpellier 2, France
Manfred Sailer Goethe University Frankfurt, Germany
Ed Stabler UCLA, USA
Jesse Tseng CNRS - CLLE-ERSS, France
Oriol Valent́ın Universitat Politècnica de Catalunya, Spain

i

Program Chairs and Standing Committee

Annie Foret IRISA - IFSIC, France
Glyn Morrill Universitat Politècnica de Catalunya, Spain
Reinhard Muskens Tilburg University, The Netherlands
Rainer Osswald Heinrich-Heine-Universität Düsseldorf, Germany

Table of Contents1

Invited contributions

Frames as Records 1
Robin Cooper

Types from frames as finite automata 18
Tim Fernando

Contributed papers

Cyclic Multiplicative-Additive Proof Nets of Linear Logic with an Application to
Language Parsing 39

Vito Michele Abrusci and Roberto Maieli

Algebraic Governance and Symmetry in Dependency Grammars 55
Carles Cardó

On the mild context-sensitivity of k-Tree Wrapping Grammar 72
Laura Kallmeyer

Distributional Learning and Context/Substructure Enumerability in Non-linear
Tree Grammars 89

Makoto Kanazawa and Ryo Yoshinaka

Between the Event Calculus and Finite State Temporality 107
Derek Kelleher, Tim Fernando and Carl Vogel

A Modal Representation of Graded Medical Statements 122
Hans-Ulrich Krieger and Stefan Schulz

Bias in Japanese Polar Questions from Constraints on Commitment Spaces 138
Lukas Rieser

Models for the Displacement Calculus 154
Oriol Valent́ın

On some Extensions of Syntactic Concept Lattices: Completeness and Finiteness Results 175
Christian Wurm

1 c© the individual authors

ii

On the mild context-sensitivity of

k-Tree Wrapping Grammar

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf, Germany
kallmeyer@phil.hhu.de

Abstract. Tree Wrapping Grammar (TWG) has been proposed in the
context of formalizing the syntactic inventory of Role and Reference
Grammar (RRG). It is close to Tree Adjoining Grammar (TAG) while
capturing predicate-argument dependencies in a more appropriate way
and being able to deal with discontinuous constituents in a more general
way. This paper is concerned with the formal properties of TWG. More
particularly, it considers k-TWG, a constrained form of TWG. We show
that for every k-TWG, a simple Context-Free Tree Grammar (CFTG) of
rank k can be constructed, which is in turn equivalent to a well-nested
Linear Context-Free Rewriting System (LCFRS) of fan-out k + 1. This
shows that, when formalizing a grammar theory such as RRG, which is
based on thorough and broad empirical research, we obtain a grammar
formalism that is mildly context-sensitive.

Keywords: tree rewriting grammars, Role and Reference Grammar, simple
context-free tree grammar, mild context-sensitivity

1 Introduction

Tree Wrapping Grammar (TWG) [6] has been introduced in the context of for-
malizing the syntactic inventory of Role and Reference Grammar (RRG) [15, 14].
A TWG consists of elementary trees, very much in the spirit of Tree Adjoining
Grammar (TAG) [5], and from these elementary trees, larger trees are obtained
by the operations of (wrapping) substitution and sister adjunction. (Wrapping)
substitutions are supposed to add syntactic arguments while sister adjunction
is used to add modifiers and functional operators. A discontinuous argument
can be split via the wrapping substitution operation: the argument tree has a
specific split node v. When adding such an argument to a predicate tree, the
lower part (rooted in v) fills an argument slot via substitution while the upper
ends up above the root of the target predicate tree.

[6] adopts the rather flat syntactic structure from RRG with categories
CORE, CLAUSE and SENTENCE. A sample RRG-inspired TWG derivation
is shown in Fig. 1. This example involves substitutions of the arguments John
and Mary into the hates tree and of Bill into claims, sister adjunction of defi-
nitely into hates (sister adjunction simply adds a new daughter to a node where

73

SENTENCE

CLAUSE

PrCS
CORE

CORE

NP NP NUC

CORE PRED

NP NP ADV V

John Mary definitely hates

CORE

NP NUC CORE

PRED

NP V

Bill claims

derived tree:
SENTENCE

CLAUSE

PrCS CORE

NP NP NUC CORE

John Bill PRED NP ADV NUC

V Mary definitely PRED

claims V

hates

Fig. 1. RRG-style TWG derivation for John Bill claims Mary definitely hates

the root of the adjoining tree has to match the target node), and wrapping
substitution of the hates tree around the claims tree.

It was shown in [6] that, in contrast to TAG, the TWG operations enable us to
add even sentential arguments with long-distance extractions by a substitution
operation. In this, TWG is close to other formalisms in the context of TAG-
related grammar research that have been proposed in order to obtain derivation
structures that reflect dependencies in a more appropriate way than it is done
by TAG [10, 11, 1].

The focus of this paper is on the formal properties of TWG. After an intro-
duction to TWG and in particular to k-TWG, a restricted form of TWG, we
show how to construct an equivalent simple context-free tree grammar (CFTG)
for a given k-TWG.

2 Tree Wrapping Grammar

The following introduction to TWG is largely taken from [6], except for the
declarative definition of the notion of k-TWG, based on properties of the deriva-
tion trees decorated with wrapping substitution markings.

Borrowing from the TAG terminology, trees that can be added by substi-
tution are called initial trees. In addition, we need adjunct trees for modeling

74

modifiers and functional elements in RRG. These trees are added by sister ad-
junction. We distinguish left-adjoining, right-adjoining and unrestricted adjunct
trees, resp. called l-adjunct, r-adjunct and d-adjunct trees. (The latter can add
a daughter at any position.)

Definition 1 (Tree Wrapping Grammar). A TreeWrapping Grammar (TWG)
is a tuple G = 〈N,T, I, AD, AL, AR, C〉 where

a) N,T are disjoint alphabets of non-terminal and terminal symbols.

b) I, AD, AL and AR are disjoint finite sets of ordered labeled trees such that

– each non-leaf in a tree is labeled by some element from N ∪N2,

– there is at most one node with a label from N2,

– leaves have labels from N ∪ T , and

– the root of each tree in AD ∪ AL ∪ AR has exactly one daughter.

c) C ⊆ N .

A non-terminal leaf is called a substitution node, and the labels from N2 are
called split categories.

Every tree in I is called an initial tree, every tree in AD∪AL∪AR an adjunct
tree and every tree in I ∪AD ∪ AL ∪ AR an elementary tree.

As we will see later, C is the set of non-terminals that can occur on a wrapping
spine (i.e., between root and substitution site of the target tree of a wrapping
substitution).

There are two TWG composition operations (see Fig. 2):

1. Standard/Wrapping substitution: a substitution node v in a tree γ gets re-
placed with a subtree α′ of an initial tree α. If α′ %= α, then the root node
v′ of α′ must be labeled with a split category 〈X,Y 〉 such that the root of
γ is labeled X and v is labeled Y . α is then split at v′ and wraps around
γ, i.e., the upper part of α ends up above the root of γ while α′ fills the
substitution slot. In this case, we call the operation a wrapping substitution.
Otherwise (α = α′), we have a standard substitution and the root of α (i.e.,
v′) must have the same label as v.

2. Sister adjunction: an adjunct tree β with root category X is added to a node
v of γ with label X . The root rβ of β is identified with v and the (unique)
daughter of rβ is added as a new daughter to v. Furthermore, if β ∈ AL

(resp. β ∈ AR), then the new daughter must be a leftmost (resp. rightmost)
daughter.

A slightly different form of tree wrapping is proposed in [9] for RRG, leading
to a flatter structure. One can consider a split node as a very special dominance
edge (with specific constraints on how to fill it). In our definition, we would then
have for a split node with categories X,Y a dominance edge between a node
labeled X and a node labeled Y such that the X-node does not have any other
daughters. In the flatter version of wrapping ([9]), the X-node can have other
daughters that end up being sisters of the target tree of the wrapping that fills
this dominance edge (see Fig. 3).

75

Wrapping
substitution:

γ X

Y

α

X

Y
❀

X

Y

Sister
adjunction:

γ

X
β X

Y

❀

X

Y

Fig. 2. Operations in TWG

γ X

Y

α

X

Y

❀

X

Y

Fig. 3. Wrapping from [9]

It is easy to see that this form of wrapping can be transformed into the one
used in this paper, simply by replacing the dominance edge with an immediate
dominance edge and splitting the lower node with top and bottom categories
X and Y respecitvely. As a result, we obtain trees that are slightly less flat
than the ones from [9] and that, if we keep track of which edges have been
added in this transformation, can be easily transformed back to the original
flatter form. Therefore, without losing anything concerning the desired linguistic
structures, for formal properties and parsing considerations we can work with
the tree wrapping definition presented here.

Every elementary tree in a TWG G is a derived tree wrt. G, and every
tree we can obtain with our composition operations from derived trees in G is
again a derived tree. Wrapping substitutions require that, in the target tree,
all categories on the path from the root to the substitution node (the wrapping
spine) are in C. A further constraint is that wrapping substitution can target
only initial trees, i.e., we cannot wrap a tree around an adjunct tree. Note that, in
contrast to [6], we do not impose a limit on the number of wrapping substitutions
stretching across a node in our definition of a TWG derived trees. This constraint
comes later with the definition of k-TWG.

So far, wrapping can occur several times at the same elementary tree. Or, to
put it differently, a node can be on several wrapping spines that are not nested.

76

Derivation of w = cbbc Derivation of w = bcbc

α X

X1 X2

β1
X

b
X

X1

b

β2
X

c
X

X2

c

α X

X1 X2

β2
X

c
X

X2

c

β1
X

b
X

X1

b

Fig. 4. Sample derivations: wrapping substitutions at sister nodes

γd X ← v1

c X ← v2

b X ← v3

X1 ← v4 X2 ← v5

b c

W (γd) =
{〈v2, v5〉, 〈v3, v4〉}

Fig. 5. Decorated derived tree arising from the first derivation in Fig. 4

See Fig. 4 for an example. In the two derivations, the root node of α is part
of the two wrapping spines. In other words, both wrappings stretch across the
root node of α. This has implications for the generative capacity and also for
the parsing complexity.

We now want to restrict the wrapping substitutions in a derivation concerning
the number of times a node can be part of a wrapping spine. To this end, we
first introduce some decoration for the derived trees in the TWG given a specific
derivation: Let γd be a tree derived in a TWG with a fixed derivation (there can
be several derivations per derived tree and, consequently, several decorations).
We define the wrapping decoration of γd as the following set of node pairsW (γd):
In every wrapping substitution step of the derivation in question with r and v

being the root node r and the substitution node v of the target of the wrapping
substitution, 〈r, v〉 ∈ W (γd). Nothing else is in W (γd). We call every v⊥ such
that there exists a v⊤ with 〈v⊤, v⊥〉 ∈ W (γd) a ⊥ node in γd. We call a derived
tree with such a decoration a decorated derived tree. An example is given in
Fig. 5.

Once we have that, we can identify for a node v in such a decorated derived
tree γ all wrapping substitution sites (⊥ nodes) where the wrapping substitution
stretches across v.

Definition 2 (Gap set, wrapping degree). Let γ = 〈V,E,≺, r, l〉 be a deco-
rated TWG derived tree with decoration W (γ), and let v ∈ V .

1. A set V⊥ ⊂ V of ⊥ nodes is a gap set with respect to v if

a) for every pair 〈v⊤, v⊥〉 ∈ W (γ) with v⊥ ∈ V⊥, it holds that v⊤ dominates
v and v strictly dominates v⊥, and

b) for every pair 〈v⊤, v⊥〉 ∈ W (γ) with v⊥ ∈ V⊥, there is no pair 〈v′⊤, v
′
⊥〉 ∈

W (γ), 〈v′⊤, v
′
⊥〉 %= 〈v⊤, v⊥〉 with v⊤ dominating v′⊤, v

′
⊤ dominating v, v

strictly dominating v′⊥, and v′⊥ dominating v⊥.

77

2. We then define the wrapping degree of v as the cardinality of its gap set.

3. The wrapping degree of a decorated derived tree is the maximal wrapping
degree of its nodes, and the wrapping degree of a derived tree γd in the TWG
G is the minimal wrapping degree of any decorated derived tree with respect
to G that yields γd.

In the example in Fig. 5, we have for instance a gap set {v4, v5} for the node
v3. The wrapping degree of this derived tree is 2.

Now we can define the tree language for a TWG in general and in the case
where wrapping degrees are limited by a k ≥ 0:

Definition 3 (Language of a TWG). Let G be a TWG.

• A saturated derived tree is a derived tree without substitution nodes and with-
out split categories.

• The tree language of G is LT (G) = {γ | γ is a saturated derived initial tree in
G}.

• The string language of G is the set of yields of trees in LT (G).

• The k-tree language of G is Lk
T (G) = {γ | γ is a saturated derived initial tree

in G with a wrapping degree ≤ k}.

• The k-string language of G is the set of yields of trees in Lk
T (G).

Some TWGs are such that the maximal wrapping degree is limited, given the
form of the elementary trees. But this is not always the case. In the following,
we call a TWG a k-TWG if we impose k as a limit for the wrapping degree of
derived trees, i.e., for a k-TWG, we consider the k-tree language of the grammar
as its tree language.

As an example, Fig. 6 gives a TWG for the copy language. Here, all substi-
tution nodes must be filled by wrapping substitutions since there are no trees
with root label A, and the nodes with the split categories are always the middle
nodes. The grammar is such that only derived trees with a wrapping degree 1
are possible.

In order to facilitate the construction of an equivalent simple CFTG for a
given k-TWG, we show the following normal form lemma:

Lemma 1. For every k-TWG G = 〈N,T, I, AD, AL, AR, C〉, there is exists a
weakly equivalent k-TWG G′ = 〈N ′, T, I ′, ∅, ∅, ∅, C〉, i.e., a k-TWG without ad-
junct trees.

The construction idea is again rather simple. For every daughter position, we
precompile the possibility to add something by sister adjunction in the following
way: We start with Itemp = I and I ′ = ∅ and we set Al = AL ∪ AD and
Ar = AR ∪ AD.

1. For every adjunct tree β, we add a subscript l (r or d respectively) to the
root label of β if β is in Al (resp. in Ar or in AD). The resulting tree is added
to Itemp .

78

G = 〈{S, A}, {a, b}, I, ∅, ∅, {S, A}〉 with I =






















S

a A

A a

S

b A

A b

S

a A

a

S

b A

b

S

a
S

A

A a

S

b
S

A

A b

S

a
S

A

a

S

b
S

A

b























Sample derivation of baabaa:

S

b
S

A

b

S

a
S

A

A a

S

a A

A a

Fig. 6. TWG for the copy language {ww |w ∈ {a, b}+}

2. For every γ ∈ Itemp : For every node v in γ that is not the root of a former
adjunct tree: If v has i daughters, then we pick one combination i1, . . . , ik
(k ≥ 0) with 0 ≤ i1 < . . . < ik ≤ i of positions between daughters. We then
add new daughters to v at all these positions, labeled with the non-terminal
of v and a subscript l for position 0, r for position i and d otherwise. The
result is added to I ′. This is repeated until I ′ does not change any more, i.e.,
all possible combinations of daughter positions for the nodes in γ have been
taken into account.

3. For every γ ∈ I ′ that is a former adjunct tree: Add

• a tree γl to I ′ that consists of γ with an additional leftmost daughter of
the root having the same label as the root and a subscript l in case the
subscript of the root is l, d otherwise.

• a tree γr to I ′ that consists of γ with an additional rightmost daughter of
the root having the same label as the root and a subscript r in case the
subscript of the root is r, d otherwise.

• a tree γlr to I ′ that consists of γ with two additional daughters of the root,
one leftmost and one rightmost daughter such that these daughters have
the same label as the root and the following subscripts: the leftmost has a
subscript l in case the subscript of the root is l, d otherwise. The rightmost
has a subscript r in case the subscript of the root is r, d otherwise.

An example of this construction can be found in Fig. 7.

The equivalence of the original grammar and the constructed one is obvious.
The latter requires the same number of wrapping substitutions as the original
one and has the same string language for the same k. But it generates different
derived trees since in cases of multiple adjunctions between two nodes we obtain
a binary structure.

79

I :
S

d d
AL :

S

a
AD :

S

b
AR :

S

c

Equivalent TWG without adjunct trees:
S

d d

Sl

a

Sl/d/r

b

Sr

c

S

Sl d d

S

d Sd d

S

d d Sr

S

Sl d Sd d

S

Sl d d Sr

S

d Sd d Sr

S

Sl d Sd d Sr

Sl

Sl a

Sl

a Sd

Sl

Sl a Sd

Sl

Sl b

Sl

b Sd

Sl

Sl b Sd

Sd

Sd b

Sd

b Sd

Sd

Sd b Sd

Sr

Sd b

Sr

b Sr

Sr

Sd b Sr

Sr

Sd c

Sr

c Sr

Sr

Sd c Sr

Fig. 7. Sample elimination of adjunct trees

3 Relation to context-free tree gramamrs

We now show that for every k-TWG one can construct an equivalent simple
context-free tree grammar of rank k. This, in turn, is weakly equivalent to well-
nested (k + 1)-LCFRS (see [16, 13] for the definition of LCFRS and [7, 3] for
well-nested LCFRS).

Without loss of generality, we assume the k-TWG to be without adjunct
trees.

3.1 Context-free tree grammars

The following introduction to context-free tree grammars is taken from [8].
A ranked alphabet is a union ∆ =

⋃
r∈N

∆(r) of disjoint sets of symbols. If

f ∈ ∆(r), r is the rank of f .
A tree over a ranked alphabet ∆ is a labeled ordered tree where each node

with n daughters is labeled by some f ∈ ∆(n). We use the term representation
of trees. The set T∆ of trees over ∆ is defined as follows: 1. If f ∈ ∆(0), then
f ∈ T∆. 2. If f ∈ ∆(n) and t1, . . . , tn ∈ T∆(n ≥ 1), then (ft1 . . . tn) ∈ T∆.

If Σ is an (unranked) alphabet and ∆ a ranked alphabet (Σ ∩ ∆ = ∅), let
TΣ,∆ be the set of trees such that whenever a node is labeled by some f ∈ ∆,
then the number of its children is equal to the rank of f .

For a set X = {x1, . . . , xn} of variables, T∆(X) denotes the set of trees over
∆∪X where members of X all have rank 0. Such a tree t containing the variables
X is often written t[x1, . . . , xn]. If t[x1, . . . , xn] ∈ T∆(X) and t1, . . . , tn ∈ T∆,

80

then t[t1, . . . , tn] denotes the result of substituting t1, . . . , tn for x1, . . . , xn, re-
spectively, in t[x1, . . . , xn]. An element t[x1, . . . , xn] ∈ T∆(X) is an n-context
over ∆ if for each i = 1, . . . , n, xi occurs exactly once in t[x1, . . . , xn].

Definition 4 (Context-free tree grammar). A context-free tree grammar
(CFTG) [12, 2] is a quadruple G = 〈N,Σ, P, S〉, where

1. N is a ranked alphabet of non-terminals,

2. Σ an unranked alphabet of terminals,

3. S ∈ N is of rank 0, and

4. P is a finite set of productions of the form

Ax1 . . . xn → t[x1, . . . , xn]

where A ∈ N (n) and t[x1, . . . , xn] ∈ TΣ,N({x1, . . . , xn}).

The rank of G is max{r |N (r) %= ∅}.

For every s, s′ ∈ TΣ,N , s ⇒G s′ is defined to hold if and only if there is a
1-context c[x1] ∈ TΣ,N({x1}), a production Bx1...xn → t[x1, ..., xn] in P , and
trees t1, ..., tn ∈ TΣ,N such that s = c[Bt1 . . . tn], s

′ = c[t[t1, . . . , tn]].
The relation ⇒∗

G is defined as the reflexive transitive closure of⇒G. The tree
language L(G) generated by a CFTG G is defined as {t ∈ TΣ |S ⇒∗

G t}. The
string language is the set of yields of the trees in L(G).

A CFTG is said to be simple if all right-hand sides of productions in the
grammar are n-contexts, in other words, they contain exactly one occurrence of
each of their n variables.

CFTG for {w3 |w ∈ {a, b}+}:

N0 = {S}, N (3) = {X}, Σ = {a, b, A}, S the start symbol.
P contains the following productions:

S → Xaaa |Xbbb

Xx1x2x2 → X(Aax1)(Aa2)(Aax3) |X(Abx1)(Abx2)(Abx3) |Ax1x2x3

Sample derivation for the string abaabaaba:

S ⇒ Xaaa ⇒ X(Aba)(Aba)(Aba)

⇒ X(Aa(Aba))(Aa(Aba))(Aa(Aba))
⇒ A(Aa(Aba))(Aa(Aba))(Aa(Aba))

Fig. 8. Simple CFTG for the double copy language

3.2 k-TWG and simple CFTG

In the following, we will show that for each k-TWG, an equivalent simple context-
free tree grammar of rank k can be constructed.

Let us explain the construction while going through the simple example in
Fig. 9. The CFTG non-terminals have the form [A,A1A2 . . . An] with n ≤ k,

81

TWG for {(bc)n |n ≥ 1} ∪ {c}:

γ1 AB

BB
ε

γ2
Aε

A

B
B
ε

bε Cε

γ′

2
AB

A

B
B
B

bε CB

γ3
CB

cε BB
ε

γ4
Cε

cε

Equivalent simple CFTG:
N (0) = {S, [A], [C]}, N (1) = {[A,B], [C,B]}, start symbol S, productions:

S → [A], S → [C]
γ1: [A,B]x1 → Ax1

γ2: [A] → A([A,B](Bb[C]))
γ′

2: [A,B]x1 → A([A,B](Bb([C,B]x1)))
γ3: [C,B]x1 → Ccx1

γ4: [C] → Cc

Fig. 9. Sample TWG and equivalent simple CFTG

A ∈ N and Ai ∈ N for 1 ≤ i ≤ n where the intuition is the A is the root category
of the tree this nonterminal expands to and A1A2 . . . An are the categories of
pending gaps from wrappings that stretch across this tree. In other words, in
the final decorated derived tree, they are the categories of the gap set nodes of
this root, in linear order. Note that, since we assume a k-TWG, there cannot be
more than k such categories. The gap trees that are to be inserted in the gap
nodes (which are substitution nodes) are the arguments of this non-terminal. In
other words, such a non-terminal tells us that we have to find an A-tree and
there are pending lower parts of split trees with categories A1, . . . , An, which
have to be inserted into that A-tree. For instance, the category [A,B] in our
example expands to A-trees that need a B-substitution node at some point
(maybe after some further substitution), in order to insert the B-gap tree to
which this category applies. The γ1-rule in the TWG for instance encodes that
one way to find such a tree is to create an A-node with a single daughter, where
this daughter is the pending B-tree.

The construction does not go directly from an elementary TWG tree to a
single production. Instead, it yields a single production for each possible deco-
ration of the TWG tree with category sequences corresponding to possible gap
set node labels in linear order that can arise within a derivation. An example
where we have more than one possibility for a single TWG tree is the tree γ2
in Fig. 9 where the γ2 and γ′

2 indicate the two cases. Accordingly, there are
two productions. One [A]-production where [A] is of rank 0. This is the case
where nothing else is wrapped around γ2 and, consequently, there is no pending
gap at its root node. The second production (the γ′

2 case) is the possibility to
have something wrapped around the γ2 tree. In this case, the gap category of
the outer tree is B, and this gap must be placed somewhere below the C node,
hence the non-terminal [C,B] with the pending gap as argument for this node.

82

In order to keep track of these sequences of gap labels, we first define possible
mappings f1, f2 for every elementary tree γ that assign to every node x in γ

either a single sequence f1(x) = f2(x) of non-terminals (= gap node labels) or,
if the node is a split node or a substitution node that is used for a wrapping
substitution, a pair of two possibly different such subsequences 〈f1(x), f2(x)〉.
Intuitively, a split node starts a new gap, which is then filled by the lower part
of the split node. Any gaps in the tree below the gap are accessible at the mother
node of the split node.

Fig. 9 gives the assignments f1 and f2 for each node as a super- and a
subscript. In cases where f1 = f2, there is just one subscript, while for f1 %= f2
(split nodes and wrapping substitution nodes), we have both. For γ2, we have
two possible assignments. The mapping of γ1 tells us that this tree is used in a
wrapping configuration where a split tree with some lower categoryB is wrapped
around it. Furthermore, according to the B-node annotation, this leaf is filled
by the wrapping substitution (f2 = ε). The first assignment for γ2 tells us that
this tree is used without wrapping anything around it. At its split node, we
wrap it around something that has to contain a B-gap (f1 = B), which will be
filled by the lower part of the split tree, therefore at that point, no more gaps
are pending (f2 = ε). In contrast to this, the second γ2 is used in a wrapping
configuration where a split tree with some lower category B is wrapped around
it (f1 = f2 = B at the root). The B gap arising from the split node in the
middle is filled by the lower B node. However, the overall B gap is still pending,
therefore we have f2 = B at the split node. This pending gap is not inserted at
the substitution node (category C), instead, the information about the B-gap
is passed (f1 = f2 = B). It can be inserted in γ3. There the substitution node
has f1 = B (which means that we need a B-substitution node to be filled with
some pending B-tree) and f2 = ε (signifying that this is the substitution node
we were looking for, no more pending gaps below).

The definition of these assignments is such that we guess the pending gap
categories for the leaves, we guess whether a substitution node is used for wrap-
ping, and for split nodes, we guess the pending gap categories that arise out of
the tree that this node is wrapped around. The rest is calculated in a bottom-up
way as follows:

– For a substitution node v with categoryA: either v is not used for a wrapping
substitution and we have f1(v) = f2(v) = A1 . . . Ai (0 ≤ i) or v is used for a
wrapping substitution and we have f1(v) = A and f2(v) = ε.

– f2(v0) = f1(v1) . . . f1(vj) for every node v0 with v1, . . . vj being all daughters
of v0 in linear precedence order such that none of the daughters is a split
node.

– For every split node v0 with top label X and bottom label Y with v1, . . . vk
being all daughters of v0 in linear precedence order, n being the mother of
v0 and vl1, . . . , v

l
j and vrj+1, . . . , v

r
n being the sisters of v0 to the left and right

in linear precedence order:

83

n

vl1 . . . vlj v0 vrj+1 . . . vrn

v1 . . . vk
f2(v0) = f1(v1) . . . f1(vk) and there are B1, . . . , Bj ∈ N such that
f1(v0) = B1 . . . BiY Bi+1 . . . Bj and
f2(n) = f1(v

l
1) . . . f1(v

l
j)B1 . . . Bif2(v0)Bi+1 . . . Bjf1(v

r
j+1) . . . f1(v

r
n).

We call the Y in this step the split category.
– For every node v that is neither a split node nor a non-terminal leaf, we have
f1(v) = f2(v).

– For every leaf v with a terminal label, we have f1(v) = f2(v) = ε.
– The length of the assigned sequences is limited to k.
– For every node v with a non-terminal label from N \ C (C is the set of
categories allowed on wrapping spines), it holds that f1 = f2 = ε.

Instead of using the original TWG, we can also use the trees with annota-
tions f1, f2 in TWG derivations. For these derivations, let us make the following
assumptions: The conditions for wrapping are that the f1 value of the split node
must be the f1 value of the root of the target tree while the bottom category
of the split node must be the f1 of the target substitution node and the f2 of
this substitution node must be ε. The annotation of the root of the target tree
remains while the annotation of the substitution node is the f2 value of the
split node. Furthermore, annotations of substitution nodes that are not used for
wrapping have to be equal to the ones of the root of the tree that substitutes in.

An example of such a TWG derivation can be found in Fig. 10.

Sample derivations of w = bcbc:
TWG:

AB
B

BB
ε

AB
B

A

B
B
B

bεε CB
B

CB
B

cεε BB
ε

Aε
ε

A

B
B
ε

b Cε
ε

Cε
ε

cεε

❀

Aε
ε

AB
B

AB
B

BB
B

bε
ε CB

B

cεε Bε
ε

bε
ε Cε

ε

cεε
Corresponding CFTG derivation:
S ⇒ [A] ⇒ A([A,B](Bb[C])) ⇒ A([A,B](Bb(Cc)))
⇒ A(A([A,B](Bb[C,B](Bb(Cc))))) ⇒ A(A(A(Bb[C,B](Bb(Cc)))))
⇒ A(A(A(Bb(Cc(Bb(Cc))))))

Fig. 10. Sample derivations in the grammars from Fig. 9

84

For these TWG derivations, the following lemma holds:

Lemma 2. With this annotated TWG we obtain exactly the set of derived trees
of the original TWG including for each node in a derived tree, obtained with a
specific derivation, a decoration with the labels of the nodes from its gap set in
linear precedence order.

This lemma holds since all possible combinations of pending gaps below sub-
stitution nodes and to the left and right of split nodes are considered in the
f1, f2 annotations. Furthermore, gaps are passed upwards. The only way to get
rid of a gap in the f1, f2 value of a root node is to wrap a tree filling this gap
around it.

Given the gap assignment definition, we can now specify the set of produc-
tions in our CFTG that we obtain for each elementary tree.

1. For every non-terminal category X in our TWG, we add a production

S → [X]

which is used for derived trees with root category X .

2. For every tree γ in the k-TWG with root r and root category A and for
every assignment f = 〈f1, f2〉 for γ as defined above, we have productions

[A, f1(r)]y1 . . . y|f1(r)| → τ(γ, f)

where τ(β, f) for any subtree β of a TWG tree with gap assignment f is
defined as follows:

– If β has only a single node v with non-terminal category B and f1(v) =
f2(v), then τ(β, f) = [B, f1(v)]x1 . . . x|f1(v)|.

1

– If β has only a single node v with non-terminal category B and f1(v) =
A ∈ N , f2 = ε, then τ(β, f) = x1.

– If the root v of β is not a split node, its root category is A, and if
β1 . . . , βn are the daughter trees of v, then

τ(β, f) = (Aτ(β1, f) . . . τ(βn, f)).

– If the root v of β is a split node with top category A and bottom category
B, and if β1 . . . , βn are the daughter trees of v, then

τ(β, f) = ([A, f1(v)]x1 . . . xi(Bτ(β1, f) . . . τ(βn, f))xi+1 . . . xj).

where f1(v) = A1 . . . AiBAi+1 . . . Aj and B is the split category from
the construction of f .

The variables y1, . . . , y|f1(r)| in the lefthand side of the production are exactly
the ones from the righthand side in linear precedence order.

3. These are all the productions in the CFTG.

1 We assume that fresh variables are used each time a new variable is needed.

85

TWG for the double copy language {w3 |w ∈ {a, b}+}:

α X

X1 X2 X3

γa
1
A2

X

X1

a X1

γa
2
A3

A2

X2

a X2

γa
3
X

A3

X3

a X3

γa
4
A4

X

X1

a

γa
5
A5

A4

X2

a

γa
6

X

A5

X3

a

(same for b and B2, B3) (same for b and B4, B5)

Equivalent simple CFTG:
Start symbol S, productions:

S → [X]
γa
6 : [X] → X([A5, X3](X3a))

γa
5 : [A5, X3]x1 → A5([A4, X2X3](X2a)x1)

γa
4 : [A4, X2X3]x1x2 → A4([X,X1X2X3](X1a)x1x2)

γa
3 : [X,X1X2X3]x1x2x3 → X([A3, X1X2X3]x1x2(X3ax3))

γa
2 : [A3, X1X2X3]x1x2x3 → A3([A2, X1X2X3]x1(X2ax2)x3)

γa
1 : [A2, X1X2X3]x1x2x3 → A2([X,X1X2X3](X1ax1)x2x3)

(same with b and B2, B3, B4, B5)
α: [X,X1X2X3]x1x2x3 → Xx1x2x3

Fig. 11. Sample 3-TWG and equivalent simple CFTG

An example of this construction can be found in Fig. 9, and a sample deriva-
tion in the TWG and the corresponding CFTG is given in Fig. 10. The TWG
derivation involves two wrappings of γ2 around γ1, the first (inner one) with
an additional substitution of γ3 into the C substitution node, the second, outer
one with a substitution of γ4 into this slot. The corresponding CFTG derivation
starts by expanding [A] to the tree corresponding to the outer wrapping of γ2,
with a non-terminal [C] for γ4. Inside the resulting tree, we have a non-terminal
[A,B] of rank 1 whose argument is the tree Bb(Cc)) which has to fill a B-gap.
This is then expanded to a γ2 tree that assumes that there is a B-gap below
its C-substitution node. This second use of γ2 creates again the request for an
A-tree with a B-gap (non-terminal [A,B]), which is now filled by γ1, and, below
its substitution node, it needs a C-tree with a B-substitution node (non-terminal
[C,B]) which can then be filled by the pending B-tree Bb(Cc)) from the outer
use of γ2. Such a tree is provided by γ3.

As a further example consider the TWG and corresponding CFTG in Fig.11.

The crucial part of the construction is actually the definition of the f1, f2
gap category annotations. Once we have this, the following holds:

Lemma 3. There is a derived tree γ in the TWG with pending gap category
sequence annotations f = 〈f1, f2〉 (written 〈γ, f〉) as described above iff there is
a corresponding derivation in the CFTG.

Here, “corresponding derivation” means the following: if γ has gap sequence
annotations f1, f2 and a root node v with node label A, then the correponding

86

derivation is of the form [A, f1(v)]y1 . . . y|f1(v)| ⇒
∗
G τ(γ, f) where τ(γ, f) is as

defined above in the construction for the case of elementary trees.
We can show this by an induction over the derivation structure, proving that

• The claim holds for elementary trees. This follows immediately from the
construction.

• We assume that the claim holds for 〈γ, f〉 and 〈α, fα〉 with correspond-
ing CFTG derivations [Aγ , gapsγ]xγ ⇒∗

G τ(γ, f) and [Aα, gapsα]xα ⇒∗
G

τ(α, fα).
Then:
〈γ′, f ′〉 can be derived from 〈γ, f〉 in the TWG via substitution of 〈α, fα〉
into one of the non-termial leaves
⇔ this non-terminal leaf in 〈γ′, f ′〉 has category Aα and gap sequence gapsα
⇔ there is a corresponding non-terminal [Aα, gapsα] in τ(γ, f) that can be
expanded using the derivation [Aα, gapsα]x ⇒∗

G τ(α, fα) (induction assump-
tion)
⇔ [Aγ , gapsγ]x ⇒∗

G τ(γ′, f ′) where, in this derivation, we have one part
[Aγ , gapsγ]xγ ⇒∗

G τ(γ, f) and a second part consisting of an application of
[Aα, gapsα]xα ⇒∗

G τ(α, fα).
• We assume that the claim holds for 〈γ, f〉 and 〈β, fβ〉 with correspond-
ing CFTG derivations [Aγ , gapsγ]xγ ⇒∗

G τ(γ, f) and [Aβ , gapsβ]xβ ⇒∗
G

τ(β, fβ).
Then:
〈γ′, f ′〉 is derived from 〈γ, fγ〉 in the TWG by wrapping 〈β, fβ〉 around 〈γ, fγ〉
⇔ there is a split node in τ(β, fβ) with category 〈Aγ , Y 〉 and with an f1
value gapsγ and there is a non-terminal leaf in 〈γ, fγ〉 with category Y and
with f1 = Y and f2 = ε
⇔ there is a non-terminal [Aγ , gapsγ] corresponding to the split node in
τ(β, fβ) that can be expanded by the derivation [Aγ , gapsγ]xγ ⇒∗

G τ(γ, f)
⇔ there is a derivation [Aβ , gapsβ]xβ ⇒∗

G τ(γ′, f ′) in the CFTG consisting
of [Aβ , gapsβ]xβ ⇒∗

G τ(β, fβ) and then an application of [Aγ , gapsγ]xγ ⇒∗
G

τ(γ, f).

With this lemma, we obtain the following theorem:

Theorem 1. For every k-TWG there is an equivalent simple CFTG of rank k.

As a consequence, we obtain that the languages of k-TWGs are in the class of
well-nested linear context-free rewriting languages2 and therefore mildly context-
sensitive [16]. This term, introduced by [4], characterizes formalisms beyond CFG
that can describe cross-serial dependencies, that are polynomially parsable and
that generate languages of constant growth. Joshi’s conjecture is that mildly
context-sensitive grammar formalisms describe the appropriate grammar class
for dealing with natural languages.

2 Note that the fact that we can construct an equivalent well-nested LCFRS for a
k-TWG does not mean that k-TWG (for some fixed k) cannot deal with ill-nested
dependencies. The structures described by the LCFRS do not correspond to the
dependency structures obtained from TWG derivations. The latter are determined
only by the fillings of substitution slots.

87

4 Conclusion

We have shown that k-TWG is a mildly context-sensitive grammar formalism,
more particular, it falls into the class of simple context-free tree languages of
rank k/well-nested (k+1)-LCFRS. This is an interesting result, considering that
TWG arose out of an attempt to formalize the syntactic inventory of RRG, a
grammar theory that emerged from broad empirical linguistic studies. Therefore
the formal results in this paper support in a convincing way Joshi’s conjecture
about the mild context-sensitivity of natural languages.

References

1. Chiang, D., Scheffler, T.: Flexible composition and delayed tree-locality. In:
TAG+9 Proceedings of the Ninth International Workshop on Tree-Adjoining
Grammar and Related Formalisms (TAG+9). pp. 17–24. Tübingen (June 2008)

2. Engelfriet, J., Schmidt, E.M.: IO and OI. Journal of Computer and System Sciences
(15), 328–353 (1977)

3. Gómez-Rodŕıguez, C., Kuhlmann, M., Satta, G.: Efficient parsing of well-nested
linear context-free rewriting systems. In: Human Language Technologies: The 2010
Annual Conference of the North American Chapter of the Association for Compu-
tational Linguistics. pp. 276–284. Association for Computational Linguistics, Los
Angeles, California (June 2010), http://www.aclweb.org/anthology/N10-1035

4. Joshi, A.K.: Tree adjoining grammars: How much context-sensitivity is required to
provide reasonable structural descriptions? In: Dowty, D., Karttunen, L., Zwicky,
A. (eds.) Natural Language Parsing, pp. 206–250. Cambridge University Press
(1985)

5. Joshi, A.K., Schabes, Y.: Tree-Adjoning Grammars. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages, pp. 69–123. Springer, Berlin (1997)

6. Kallmeyer, L., Osswald, R., Van Valin, Jr., R.D.: Tree wrapping for Role and Refer-
ence Grammar. In: Morrill, G., Nederhof, M.J. (eds.) Formal Grammar 2012/2013.
Lecture Notes in Computer Science, vol. 8036, pp. 175–190. Springer, Berlin, Hei-
delberg (2013)

7. Kanazawa, M.: The pumping lemma for well-nested Multiple Context-Free Lan-
guages. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 312–
325. Springer, Berlin Heidelberg (2009)

8. Kanazawa, M.: Multidimensional trees and a Chomsky-Schützenberger-Weir rep-
resentation theorem for simple context-free tree grammars. Journal of Logic and
Computation (Published online June 30, 2014)

9. Osswald, R., Kallmeyer, L.: Towards a formalization of Role and Reference Gram-
mar. In: Proceedings of the 2013 Conference on Role and Reference Grammar (to
appear)

10. Rambow, O., Vijay-Shanker, K., Weir, D.: D-Tree Grammars. In: Proceedings of
ACL (1995)

11. Rambow, O., Vijay-Shanker, K., Weir, D.: D-Tree Substitution Grammars. Com-
putational Linguistics (2001)

12. Rounds, W.C.: Mappings and grammars on trees. Mathematical Systems Theory
(4), 257–287 (1970)

13. Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars.
Theoretical Computer Science 88(2), 191–229 (1991)

88

14. Van Valin, Jr., R.D.: Exploring the Syntax-Semantics Interface. Cambridge Uni-
versity Press (2005)

15. Van Valin, Jr., R.D., Foley, W.A.: Role and reference grammar. In: Moravcsik,
E.A., Wirth, J.R. (eds.) Current approaches to syntax, Syntax and semantics,
vol. 13, pp. 329–352. Academic Press, New York (1980)

16. Vijay-Shanker, K., Weir, D.J., Joshi, A.K.: Characterizing structural descriptions
produced by various grammatical formalisms. In: Proceedings of ACL. Stanford
(1987)

