

Syntax-Driven Semantic Frame Composition in Lexicalized Tree Adjoining Grammars

Laura Kallmeyer and Rainer Osswald

Heinrich-Heine-Universität Düsseldorf / Institute of Linguistics and Information Science

Project goals

- Development of a grammar engineering framework that integrates lexical and constructional semantics and allows a fine-grained factorization into syntactic and semantic components.
- Method: Combination of Lexical Tree Adjoining Grammar (LTAG) and decompositional frame semantics.

• Tree rewriting system (TAG) on *elementary trees* with two operations: *substitution* and *adjunction*.

Example: Simple TAG derivation by substitution and adjunction

S VP

Case study: the English dative alternation

- (1) a. John sent Mary the book.
 - b. John sent the book to Mary.

Traditional decompositional analysis:

- (2) a. [[x ACT] CAUSE [z HAVE y]]
 - b. [[x ACT] CAUSE [y GO TO z]]

- (double object, DO)
- (prepositional object, PO)
 - (caused possession) (caused motion)

Observation (inter alia, Krifka 2004, Rappaport Hovav & Levin 2008):

• The interpretations of the DO and the PO constructions are sensitive to the lexical semantics of the verb.

Partial semantic classification of alternating verbs (cf. Beavers 2011)

		lexi	cal mea	PO pattern	DO pattern		
	#args	result	punct.	manner	motion	(\diamond arrive)	(◇receive)
give	3	receive	yes	no	no	receive	receive
hand	3	receive	yes	yes	yes	receive	receive
send	3	leave ◇arrive	yes	no	yes	⊘arrive	◇receive
throw	2	leave	yes	yes	yes	◇arrive	◇receive
bring	3	arrive	no	no	yes	arrive	receive

Sketch of lexical and constructional frames

V _[S=0]	[causation] V _{IS}	=0]	[causation]		V _[S=0]	causation		
		[activity]]		[throw-activity]		CAUSE	activity	
conde	CAUSE	FFFECTOR II	thre	throws	CAUSE	FEFECTOR III	aives	O, OOL	EFFECTOR 1	

- Elementary trees are lexically anchored and they can be arbitrarily large (*extended domain of locality*).
- Elementary trees can be split into *lexical anchors* and *unanchored trees*, which are organized in *tree families* that represent subcategorization frames.

Example: Unanchored tree family for transitive verbs

Metagrammar (Candito 1999, Crabbe & Duchier 2005)

• Constraint-based, factorized description of unanchored elementary trees.

Decompositional frame semantics

• Concept centered with inherent structural properties (vs. event logic).

• Much more flexible than traditional decompositional templates.

Ongoing and future work

- Systematic definition of syntactic classes and generation of tree families.
- Larger coverage of constructions and more detailed semantic frames.
- Implementation by means of the XMG und TuLiPA tools.

Deutsche Forschungsgemeinschaft

DFG

