
RRG & FG
Laura Kallmeyer & Rainer Osswald

Heinrich-Heine-Universität Düsseldorf

Motivation

Ask not what RRG
can do for you –
ask what you

can do for RRG.

2 / 23

Motivation

Ask what you
can do for RRG
so that RRG can
do more for you.

3 / 23

What is RRG (= Role & Reference Grammar) about?

Linking
algorithm

Syntactic representation

Semantic representation

Constructional
schemas

Syntactic
inventory

Lexicon

D
iscourse-pragm

atics

[do′(x,∅)] CAUSE [INGR shattered′(y)]

〈IF INT 〈TNS PRES 〈ASP PERF PROG 〈do′(Kim, [cry′(Kim)]〉〉〉〉

RP

PRED

NUCL

CORE
RP

PRED

NUCL RP PP

CORE

ADV

LDP

RP

PrCS

RP

V

PRED

NUCL

CORE

CLAUSE

SENTENCE

PP

PP

PERIPHERY

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

MORPHOLOGY —
SYNTAX Juncture: nuclear

Nexus: cosubordination
Construction:

RP

NUCL1

RP

NUCL2

NUCL

CORE

Linking: default
SEMANTICS [SEMNUCL1] CAUSE [SEMNUCL2]
PRAGMATICS unspecified

4 / 23

What is FG (= Formal Grammar) about?

Formal (= mathematical/logical) models of grammar

Precise definition of the set of derivable (tree) structures, . . .

Generative capacity of grammar formalisms

Context free languages (but the Swiss!), weakly context sensitive,

cross-serial dependencies, copy language, . . .

Complexity of (parsing, . . .) algorithms

Polynomial time, . . .

Compositionality of syntax & semantics

Montague grammar, λ-calculus, Categorial Grammar, . . .

5 / 23

Why is an FG perspective on RRG useful (and for whom)?

Is a formalization relevant for the working typologist?

Maybe not, but it can help to eliminate inconsistencies and

gaps of the theory.

Doesn’t RRG already come with a lot of formal elements?

Sure, but these elements are not defined with logical and

mathematical rigor.

Further advantages:

A formalization can serve as a basis (in fact, is a requirement)

for a computational treatment of RRG.

It allows us to study the generative power of RRG and the

complexity issues related to processing RRG-based grammars.

Moreover, the formalization should make it easier to extend and

modify the theory.

6 / 23

Why is an FG perspective on RRG useful (and for whom)?

Is a formalization relevant for the working typologist?

Maybe not, but it can help to eliminate inconsistencies and

gaps of the theory.

Doesn’t RRG already come with a lot of formal elements?

Sure, but these elements are not defined with logical and

mathematical rigor.

Further advantages:

A formalization can serve as a basis (in fact, is a requirement)

for a computational treatment of RRG.

It allows us to study the generative power of RRG and the

complexity issues related to processing RRG-based grammars.

Moreover, the formalization should make it easier to extend and

modify the theory.

6 / 23

Why is an FG perspective on RRG useful (and for whom)?

Is a formalization relevant for the working typologist?

Maybe not, but it can help to eliminate inconsistencies and

gaps of the theory.

Doesn’t RRG already come with a lot of formal elements?

Sure, but these elements are not defined with logical and

mathematical rigor.

Further advantages:

A formalization can serve as a basis (in fact, is a requirement)

for a computational treatment of RRG.

It allows us to study the generative power of RRG and the

complexity issues related to processing RRG-based grammars.

Moreover, the formalization should make it easier to extend and

modify the theory.

6 / 23

Why is an FG perspective on RRG useful (and for whom)?

Is a formalization relevant for the working typologist?

Maybe not, but it can help to eliminate inconsistencies and

gaps of the theory.

Doesn’t RRG already come with a lot of formal elements?

Sure, but these elements are not defined with logical and

mathematical rigor.

Further advantages:

A formalization can serve as a basis (in fact, is a requirement)

for a computational treatment of RRG.

It allows us to study the generative power of RRG and the

complexity issues related to processing RRG-based grammars.

Moreover, the formalization should make it easier to extend and

modify the theory.

6 / 23

Why is an FG perspective on RRG useful (and for whom)?

Is a formalization relevant for the working typologist?

Maybe not, but it can help to eliminate inconsistencies and

gaps of the theory.

Doesn’t RRG already come with a lot of formal elements?

Sure, but these elements are not defined with logical and

mathematical rigor.

Further advantages:

A formalization can serve as a basis (in fact, is a requirement)

for a computational treatment of RRG.

It allows us to study the generative power of RRG and the

complexity issues related to processing RRG-based grammars.

Moreover, the formalization should make it easier to extend and

modify the theory.

6 / 23

Outline of a formalization of RRG

The inventory of syntactic templates

CLAUSE

PrCS CORE

 CORE< PERIPHERY

NUCNP PP

PRED

PPV

Syntactic inventory

CLAUSELDP

SENTENCE

SENTENCE

LDP CLAUSE

 CORE< PERIPHERY PrCS

PRED

VADV NP
PP

NUCNP PP

(e.g. Yesterday, what did Robin show to Pat in the library?)

Issues
How are syntactic

templates defined?

How do they combine?

Proposal
Use concepts from

(Lexicalized) Tree

Adjoining Grammars

(LTAG)

Adapt the LTAG

formalism to the

syntactic dimension

of RRG

7 / 23

Outline of a formalization of RRG

The inventory of syntactic templates

CLAUSE

PrCS CORE

 CORE< PERIPHERY

NUCNP PP

PRED

PPV

Syntactic inventory

CLAUSELDP

SENTENCE

SENTENCE

LDP CLAUSE

 CORE< PERIPHERY PrCS

PRED

VADV NP
PP

NUCNP PP

(e.g. Yesterday, what did Robin show to Pat in the library?)

Issues
How are syntactic

templates defined?

How do they combine?

Proposal
Use concepts from

(Lexicalized) Tree

Adjoining Grammars

(LTAG)

Adapt the LTAG

formalism to the

syntactic dimension

of RRG

7 / 23

Outline of a formalization of RRG

The inventory of syntactic templates

CLAUSE

PrCS CORE

 CORE< PERIPHERY

NUCNP PP

PRED

PPV

Syntactic inventory

CLAUSELDP

SENTENCE

SENTENCE

LDP CLAUSE

 CORE< PERIPHERY PrCS

PRED

VADV NP
PP

NUCNP PP

(e.g. Yesterday, what did Robin show to Pat in the library?)

Issues
How are syntactic

templates defined?

How do they combine?

Proposal
Use concepts from

(Lexicalized) Tree

Adjoining Grammars

(LTAG)

Adapt the LTAG

formalism to the

syntactic dimension

of RRG

7 / 23

Outline of a formalization of RRG

An every-day example

(1) Van watched a match.

RP
[I=u]

‘Van’

u
⎡
⎢
⎢
⎢
⎢
⎣

person
name ‘Van’

⎤
⎥
⎥
⎥
⎥
⎦

CLAUSE

CORE
[I=e]

RP
[I=y]

NUC

V

‘watched’

RP
[I=x]

e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

watching
actor x
theme y

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

RP
[I=v]

‘a match’

v[match]

x ≜u y ≜ v

CLAUSE

CORE
[I=e]

RP
[I=y]

‘a match’

NUC

V

‘watched’

RP
[I=x]

‘Van’

e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

watching

actor x
⎡
⎢
⎢
⎢
⎢
⎣

person

name ‘Van’

⎤
⎥
⎥
⎥
⎥
⎦

theme y [match]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ewatching

x
person

‘Van’

y match

actor

name

theme

8 / 23

Outline of a formalization of RRG

An every-day example

(1) Van watched a match.

RP
[I=u]

‘Van’

u
⎡
⎢
⎢
⎢
⎢
⎣

person
name ‘Van’

⎤
⎥
⎥
⎥
⎥
⎦

CLAUSE

CORE
[I=e]

RP
[I=y]

NUC

V

‘watched’

RP
[I=x]

e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

watching
actor x
theme y

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

RP
[I=v]

‘a match’

v[match]

x ≜u y ≜ v

CLAUSE

CORE
[I=e]

RP
[I=y]

‘a match’

NUC

V

‘watched’

RP
[I=x]

‘Van’

e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

watching

actor x
⎡
⎢
⎢
⎢
⎢
⎣

person

name ‘Van’

⎤
⎥
⎥
⎥
⎥
⎦

theme y [match]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ewatching

x
person

‘Van’

y match

actor

name

theme

8 / 23

Outline of a formalization of RRG

An every-day example

(1) Van watched a match.

RP
[I=u]

‘Van’

u
⎡
⎢
⎢
⎢
⎢
⎣

person
name ‘Van’

⎤
⎥
⎥
⎥
⎥
⎦

CLAUSE

CORE
[I=e]

RP
[I=y]

NUC

V

‘watched’

RP
[I=x]

e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

watching
actor x
theme y

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

RP
[I=v]

‘a match’

v[match]

x ≜u y ≜ v

CLAUSE

CORE
[I=e]

RP
[I=y]

‘a match’

NUC

V

‘watched’

RP
[I=x]

‘Van’

e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

watching

actor x
⎡
⎢
⎢
⎢
⎢
⎣

person

name ‘Van’

⎤
⎥
⎥
⎥
⎥
⎦

theme y [match]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ewatching

x
person

‘Van’

y match

actor

name

theme

8 / 23

Outline of a formalization of RRG

An every-day example

(1) Van watched a match.

RP
[I=u]

‘Van’

u
⎡
⎢
⎢
⎢
⎢
⎣

person
name ‘Van’

⎤
⎥
⎥
⎥
⎥
⎦

CLAUSE

CORE
[I=e]

RP
[I=y]

NUC

V

‘watched’

RP
[I=x]

e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

watching
actor x
theme y

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

RP
[I=v]

‘a match’

v[match]

x ≜u y ≜ v

CLAUSE

CORE
[I=e]

RP
[I=y]

‘a match’

NUC

V

‘watched’

RP
[I=x]

‘Van’

e

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

watching

actor x
⎡
⎢
⎢
⎢
⎢
⎣

person

name ‘Van’

⎤
⎥
⎥
⎥
⎥
⎦

theme y [match]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

ewatching

x
person

‘Van’

y match

actor

name

theme

8 / 23

Outline of a formalization of RRG

The LTAG + frame semantics perspective on RRG:

Elementary construction
= elementary tree (full argument projection) + semantic frame

+ linking of frame node variables to interface features in the tree

“Complicate locally, simplify globally”

1. A small set of (global) operations for syntactic composition

2. Many linguistic regularities and generalizations are encoded in

elementary constructions → decomposition in the metagrammar

Special tree operations because of flat syntactic structures:

Wrapping substitution and sister adjunction.

Argument linking rules as constraints in the metagrammar.

“It’s the metagrammar where the action is.” [≈ Van Valin, p.c.]

9 / 23

Outline of a formalization of RRG

The LTAG + frame semantics perspective on RRG:

Elementary construction
= elementary tree (full argument projection) + semantic frame

+ linking of frame node variables to interface features in the tree

“Complicate locally, simplify globally”

1. A small set of (global) operations for syntactic composition

2. Many linguistic regularities and generalizations are encoded in

elementary constructions → decomposition in the metagrammar

Special tree operations because of flat syntactic structures:

Wrapping substitution and sister adjunction.

Argument linking rules as constraints in the metagrammar.

“It’s the metagrammar where the action is.” [≈ Van Valin, p.c.]

9 / 23

Outline of a formalization of RRG

The LTAG + frame semantics perspective on RRG:

Elementary construction
= elementary tree (full argument projection) + semantic frame

+ linking of frame node variables to interface features in the tree

“Complicate locally, simplify globally”

1. A small set of (global) operations for syntactic composition

2. Many linguistic regularities and generalizations are encoded in

elementary constructions → decomposition in the metagrammar

Special tree operations because of flat syntactic structures:

Wrapping substitution and sister adjunction.

Argument linking rules as constraints in the metagrammar.

“It’s the metagrammar where the action is.” [≈ Van Valin, p.c.]

9 / 23

Outline of a formalization of RRG

The LTAG + frame semantics perspective on RRG:

Elementary construction
= elementary tree (full argument projection) + semantic frame

+ linking of frame node variables to interface features in the tree

“Complicate locally, simplify globally”

1. A small set of (global) operations for syntactic composition

2. Many linguistic regularities and generalizations are encoded in

elementary constructions → decomposition in the metagrammar

Special tree operations because of flat syntactic structures:

Wrapping substitution and sister adjunction.

Argument linking rules as constraints in the metagrammar.

“It’s the metagrammar where the action is.” [≈ Van Valin, p.c.]

9 / 23

Outline of a formalization of RRG

The LTAG + frame semantics perspective on RRG:

Elementary construction
= elementary tree (full argument projection) + semantic frame

+ linking of frame node variables to interface features in the tree

“Complicate locally, simplify globally”

1. A small set of (global) operations for syntactic composition

2. Many linguistic regularities and generalizations are encoded in

elementary constructions → decomposition in the metagrammar

Special tree operations because of flat syntactic structures:

Wrapping substitution and sister adjunction.

Argument linking rules as constraints in the metagrammar.

“It’s the metagrammar where the action is.” [≈ Van Valin, p.c.]

9 / 23

Example (cont’d)

(2) Fortuna Van claimed will probably win the match.

Syntax:
CL

RP

PrCS

RP

RP

Fortuna Van

NUC

V

claim-ed will probably win

V

NUC

CO

CLCO

the match

ADV

NUC

CO

CL

NUC

CO

CLTNS TNS

periphery

10 / 23

Example (cont’d)

(2) Fortuna Van claimed will probably win the match.

Syntax:
CL

RP

PrCS

RP

RP

Fortuna Van

NUC

V

claim-ed will probably win

V

NUC

CO

CLCO

the match

ADV

NUC

CO

CL

NUC

CO

CLTNS TNS

periphery

10 / 23

Example (cont’d)

(2) Fortuna Van claimed will probably win the match.

Semantics:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

statement

actor 1

⎡
⎢
⎢
⎢
⎢
⎣

person

name ‘Van´

⎤
⎥
⎥
⎥
⎥
⎦

speaker 1

message

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prediction

about

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

winning

actor

⎡
⎢
⎢
⎢
⎢
⎣

team

name ‘Fortuna’

⎤
⎥
⎥
⎥
⎥
⎦

theme [match]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

probability [high]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

11 / 23

�estions for the formalization

What are the elementary building blocks?

How is the syntactic tree generated?

What do the funny bold edges in the operator projection mean?

How are periphery modifiers added to the structure?

How do we make sure certain parts are obligatory, for instance

syntactic arguments but also operators such as TNS?

How do we link syntax to semantics in such as way as to enable a

compositional semantics?

12 / 23

Example: Argument insertion

Arguments are added by (wrapping) substitution.

CL

CLCO

NUC

V

‘claimed’

RP

RP

‘Van’

CL

CLCO

NUC

V

‘claimed’

RP

‘Van’

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CL

CL

CO

RPNUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

RP

‘Fortuna’

RP

‘the match’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

Argument slots (= substitution nodes) have to be filled in order to obtain a

well-formed complete syntactic tree.

13 / 23

Example: Argument insertion

Arguments are added by (wrapping) substitution.

CL

CLCO

NUC

V

‘claimed’

RP

RP

‘Van’

CL

CLCO

NUC

V

‘claimed’

RP

‘Van’

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CL

CL

CO

RPNUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

RP

‘Fortuna’

RP

‘the match’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

Argument slots (= substitution nodes) have to be filled in order to obtain a

well-formed complete syntactic tree.

13 / 23

Example: Argument insertion

Arguments are added by (wrapping) substitution.

CL

CLCO

NUC

V

‘claimed’

RP

RP

‘Van’

CL

CLCO

NUC

V

‘claimed’

RP

‘Van’

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CL

CL

CO

RPNUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

RP

‘Fortuna’

RP

‘the match’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

Argument slots (= substitution nodes) have to be filled in order to obtain a

well-formed complete syntactic tree.

13 / 23

Example: Argument insertion

Arguments are added by (wrapping) substitution.

CL

CLCO

NUC

V

‘claimed’

RP

RP

‘Van’

CL

CLCO

NUC

V

‘claimed’

RP

‘Van’

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CL

CL

CO

RPNUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

RP

‘Fortuna’

RP

‘the match’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

Argument slots (= substitution nodes) have to be filled in order to obtain a

well-formed complete syntactic tree.

13 / 23

Example: Argument insertion

Arguments are added by (wrapping) substitution.

CL

CLCO

NUC

V

‘claimed’

RP

RP

‘Van’

CL

CLCO

NUC

V

‘claimed’

RP

‘Van’

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CL

CL

CO

RPNUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

RP

‘Fortuna’

RP

‘the match’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

Argument slots (= substitution nodes) have to be filled in order to obtain a

well-formed complete syntactic tree.

13 / 23

Example: Argument insertion

Arguments are added by (wrapping) substitution.

CL

CLCO

NUC

V

‘claimed’

RP

RP

‘Van’

CL

CLCO

NUC

V

‘claimed’

RP

‘Van’

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CL

CL

CO

RPNUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

RP

‘Fortuna’

RP

‘the match’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

Argument slots (= substitution nodes) have to be filled in order to obtain a

well-formed complete syntactic tree.

13 / 23

Example: Argument insertion

Arguments are added by (wrapping) substitution.

CL

CLCO

NUC

V

‘claimed’

RP

RP

‘Van’

CL

CLCO

NUC

V

‘claimed’

RP

‘Van’

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CL

CL

CO

RPNUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

RP

‘Fortuna’

RP

‘the match’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

Argument slots (= substitution nodes) have to be filled in order to obtain a

well-formed complete syntactic tree.

13 / 23

Example: Operators and modifiers

Operators and modifiers are added by sister adjunction.

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

CO

ADV

‘probably’

CO

OP

‘will’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

ADV

‘probably’

OP

‘will’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

(The operator projection as well as modifier scope is modeled in the

features.)

14 / 23

Example: Operators and modifiers

Operators and modifiers are added by sister adjunction.

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

CO

ADV

‘probably’

CO

OP

‘will’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

ADV

‘probably’

OP

‘will’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

(The operator projection as well as modifier scope is modeled in the

features.)

14 / 23

Example: Operators and modifiers

Operators and modifiers are added by sister adjunction.

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

CO

ADV

‘probably’

CO

OP

‘will’

CL

CL

CO

RP

‘the match’

NUC

V

‘win’

ADV

‘probably’

OP

‘will’

CO

NUC

V

‘claimed’

RP

‘Van’

PrCS

RP

‘Fortuna’

(The operator projection as well as modifier scope is modeled in the

features.)

14 / 23

Example: Features

Features on nodes take care of agreement, case assignment, tense

etc.

Features between edges express constraints on possible adjunctions

in between.

15 / 23

Example: Features

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL

CO

RP[case = acc]NUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL

[tns = +]

CO

[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −

co −

nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO

[
tns +

ops[cl +]
] [tns −]

OP

‘will’

CL

PrCS

RP[case = nom]

CL[tns = 1]

[tns = +]

CO[op = [cl = [tns = 1]]]

[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −

co −

nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO[op = 2]

[
tns +

ops[cl +]
] [tns −]

OP 2 [cl = [tns = fut]]

‘will’

case on nodes for case assignment

tns on edges for obligatory adjunction of a single tns operator

ops on edges to keep track of the the correspondence between

surface order and operator hierarchy

op on nodes that lists the operators of the entire layered structure

tns etc. on the corresponding layer nodes

cl, co,nuc on OP nodes that characterize the operator’s contribution

16 / 23

Example: Features

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL

CO

RP[case = acc]NUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL

[tns = +]

CO

[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −

co −

nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO

[
tns +

ops[cl +]
] [tns −]

OP

‘will’

CL

PrCS

RP[case = nom]

CL[tns = 1]

[tns = +]

CO[op = [cl = [tns = 1]]]

[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −

co −

nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO[op = 2]

[
tns +

ops[cl +]
] [tns −]

OP 2 [cl = [tns = fut]]

‘will’

case on nodes for case assignment

tns on edges for obligatory adjunction of a single tns operator

ops on edges to keep track of the the correspondence between

surface order and operator hierarchy

op on nodes that lists the operators of the entire layered structure

tns etc. on the corresponding layer nodes

cl, co,nuc on OP nodes that characterize the operator’s contribution

16 / 23

Example: Features

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL

CO

RP[case = acc]NUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL

[tns = +]

CO

[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −

co −

nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO

[
tns +

ops[cl +]
] [tns −]

OP

‘will’

CL

PrCS

RP[case = nom]

CL[tns = 1]

[tns = +]

CO[op = [cl = [tns = 1]]]

[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −

co −

nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO[op = 2]

[
tns +

ops[cl +]
] [tns −]

OP 2 [cl = [tns = fut]]

‘will’

case on nodes for case assignment

tns on edges for obligatory adjunction of a single tns operator

ops on edges to keep track of the the correspondence between

surface order and operator hierarchy

op on nodes that lists the operators of the entire layered structure

tns etc. on the corresponding layer nodes

cl, co,nuc on OP nodes that characterize the operator’s contribution

16 / 23

Example: Features

CL

PrCS

RP

CL

CO

RPNUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL

CO

RP[case = acc]NUC

V

‘win’

CO

OP

‘will’

CL

PrCS

RP[case = nom]

CL

[tns = +]

CO

[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −

co −

nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO

[
tns +

ops[cl +]
] [tns −]

OP

‘will’

CL

PrCS

RP[case = nom]

CL[tns = 1]

[tns = +]

CO[op = [cl = [tns = 1]]]

[tns = −]

RP[case = acc]NUC

[ops 3

⎡
⎢
⎢
⎢
⎢
⎢
⎣

cl −

co −

nuc −

⎤
⎥
⎥
⎥
⎥
⎥
⎦

] [ops 3]

V

‘win’

CO[op = 2]

[
tns +

ops[cl +]
] [tns −]

OP 2 [cl = [tns = fut]]

‘will’

case on nodes for case assignment

tns on edges for obligatory adjunction of a single tns operator

ops on edges to keep track of the the correspondence between

surface order and operator hierarchy

op on nodes that lists the operators of the entire layered structure

tns etc. on the corresponding layer nodes

cl, co,nuc on OP nodes that characterize the operator’s contribution

16 / 23

Example: Interfacing syntax and semantics

Interface features link frame nodes to syntactic nodes.

Their unification during syntactic composition triggers semantic

frame unification.

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

e1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

statement
actor x
speaker x

message v
⎡
⎢
⎢
⎢
⎢
⎣

prediction

about e2

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

17 / 23

Example: Interfacing syntax and semantics

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

e1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

statement
actor x
speaker x

message v
⎡
⎢
⎢
⎢
⎢
⎣

prediction

about e2

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

RP[i = u]

‘Van’

u
⎡
⎢
⎢
⎢
⎢
⎣

person
name ‘Van

⎤
⎥
⎥
⎥
⎥
⎦

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

‘Van’

e1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

statement

actor x
⎡
⎢
⎢
⎢
⎢
⎣

person

name ‘Van

⎤
⎥
⎥
⎥
⎥
⎦

speaker x

message v
⎡
⎢
⎢
⎢
⎢
⎣

prediction

about e2

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

CL

PrCS

RP[i = y]

CL[e = e3, i = w]

CO[e = e3, i = w]

RP[i = z]NUC

V

‘win’

e3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

winning
actor y
theme z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

18 / 23

Example: Interfacing syntax and semantics

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

e1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

statement
actor x
speaker x

message v
⎡
⎢
⎢
⎢
⎢
⎣

prediction

about e2

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

RP[i = u]

‘Van’

u
⎡
⎢
⎢
⎢
⎢
⎣

person
name ‘Van

⎤
⎥
⎥
⎥
⎥
⎦

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

‘Van’

e1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

statement

actor x
⎡
⎢
⎢
⎢
⎢
⎣

person

name ‘Van

⎤
⎥
⎥
⎥
⎥
⎦

speaker x

message v
⎡
⎢
⎢
⎢
⎢
⎣

prediction

about e2

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

CL

PrCS

RP[i = y]

CL[e = e3, i = w]

CO[e = e3, i = w]

RP[i = z]NUC

V

‘win’

e3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

winning
actor y
theme z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

18 / 23

Example: Interfacing syntax and semantics

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

e1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

statement
actor x
speaker x

message v
⎡
⎢
⎢
⎢
⎢
⎣

prediction

about e2

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

RP[i = u]

‘Van’

u
⎡
⎢
⎢
⎢
⎢
⎣

person
name ‘Van

⎤
⎥
⎥
⎥
⎥
⎦

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

‘Van’

e1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

statement

actor x
⎡
⎢
⎢
⎢
⎢
⎣

person

name ‘Van

⎤
⎥
⎥
⎥
⎥
⎦

speaker x

message v
⎡
⎢
⎢
⎢
⎢
⎣

prediction

about e2

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

CL

PrCS

RP[i = y]

CL[e = e3, i = w]

CO[e = e3, i = w]

RP[i = z]NUC

V

‘win’

e3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

winning
actor y
theme z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

18 / 23

Example: Interfacing syntax and semantics

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

e1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

statement
actor x
speaker x

message v
⎡
⎢
⎢
⎢
⎢
⎣

prediction

about e2

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

RP[i = u]

‘Van’

u
⎡
⎢
⎢
⎢
⎢
⎣

person
name ‘Van

⎤
⎥
⎥
⎥
⎥
⎦

CL

CL[e = e2, i = v]CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

‘Van’

e1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

statement

actor x
⎡
⎢
⎢
⎢
⎢
⎣

person

name ‘Van

⎤
⎥
⎥
⎥
⎥
⎦

speaker x

message v
⎡
⎢
⎢
⎢
⎢
⎣

prediction

about e2

⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

CL

PrCS

RP[i = y]

CL[e = e3, i = w]

CO[e = e3, i = w]

RP[i = z]NUC

V

‘win’

e3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

winning
actor y
theme z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

18 / 23

Example: Interfacing syntax and semantics

CL

CL[e = e2, i = v]

CO[e = e2, i = v]

RP[i = z]NUC

V

‘win’

CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

‘Van’

PrCS

RP[i = y]

e1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

statement

actor x
⎡
⎢
⎢
⎢
⎢
⎣

person

name ‘Van

⎤
⎥
⎥
⎥
⎥
⎦

speaker x

message v

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prediction

about e2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

winning

actor y
theme z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

CO[i = r]

Adv

‘probably’

r[probability [high]]

19 / 23

Example: Interfacing syntax and semantics

CL

CL[e = e2, i = v]

CO[e = e2, i = v]

RP[i = z]NUC

V

‘win’

CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

‘Van’

PrCS

RP[i = y]

e1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

statement

actor x
⎡
⎢
⎢
⎢
⎢
⎣

person

name ‘Van

⎤
⎥
⎥
⎥
⎥
⎦

speaker x

message v

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prediction

about e2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

winning

actor y
theme z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

CO[i = r]

Adv

‘probably’

r[probability [high]]

19 / 23

Example: Interfacing syntax and semantics

CL

CL[e = e2, i = v]

CO[e = e2, i = v]

RP[i = z]NUC

V

‘win’

Adv

‘probably’

CO[e = e1]

NUC

V

‘claimed’

RP[i = x]

‘Van’

PrCS

RP[i = y]

e1

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

statement

actor x
⎡
⎢
⎢
⎢
⎢
⎣

person

name ‘Van’

⎤
⎥
⎥
⎥
⎥
⎦

speaker x

message v

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

prediction

about e2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

winning

actor y
theme z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

probability [high]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

20 / 23

Summary & Conclusion

The good news: RRG can be formalized while retaining its basic outline.

General composition operations for elementary trees/constructions.

Contraint-based specification of elementary constructions.

Linking rules as constraints in the metagrammar.

. . .

The even be�er news: A lot remains to be done !

Decision about whether to analyze a given structure (e.g., cosub-

ordination) as a construction or as a composition in the syntax.

General issue: What is the best methodology for formulating

constraints in the metagrammar that capture language-specific

and cross-linguistic generalizations in the most appropriate way?

Formalization of RRG’s discourse-pragmatic dimension.

. . .

21 / 23

Summary & Conclusion

The good news: RRG can be formalized while retaining its basic outline.

General composition operations for elementary trees/constructions.

Contraint-based specification of elementary constructions.

Linking rules as constraints in the metagrammar.

. . .

The even be�er news: A lot remains to be done !

Decision about whether to analyze a given structure (e.g., cosub-

ordination) as a construction or as a composition in the syntax.

General issue: What is the best methodology for formulating

constraints in the metagrammar that capture language-specific

and cross-linguistic generalizations in the most appropriate way?

Formalization of RRG’s discourse-pragmatic dimension.

. . .

21 / 23

Summary & Conclusion

The good news: RRG can be formalized while retaining its basic outline.

General composition operations for elementary trees/constructions.

Contraint-based specification of elementary constructions.

Linking rules as constraints in the metagrammar.

. . .

The even be�er news: A lot remains to be done !

Decision about whether to analyze a given structure (e.g., cosub-

ordination) as a construction or as a composition in the syntax.

General issue: What is the best methodology for formulating

constraints in the metagrammar that capture language-specific

and cross-linguistic generalizations in the most appropriate way?

Formalization of RRG’s discourse-pragmatic dimension.

. . .

21 / 23

Outlook

GR

22 / 23

References

Kallmeyer, Laura. 2016. On the mild context-sensitivity of k-tree wrapping grammar. In Annie Foret

et al. (eds.), Formal Grammar: 20th and 21st International Conferences, 77–93. Springer.

Kallmeyer, Laura, Timm Lichte, Rainer Osswald & Simon Petitjean. 2016. Argument linking in LTAG:

A constraint-based implementation with XMG. In Proceedings of the 12th International Workshop
on Tree Adjoining Grammars and related formalisms (TAG+12), 48–57.

Kallmeyer, Laura & Rainer Osswald. 2013. Syntax-driven semantic frame composition in Lexicalized

Tree Adjoining Grammars. Journal of Language Modelling 1(2). 267–330.

Kallmeyer, Laura & Rainer Osswald. 2017. Combining predicate-argument structure and operator

projection: Clause structure in Role and Reference Grammar. In Proceedings of the 13th
International Workshop on Tree Adjoining Grammars and related formalisms (TAG+13), 61–70.

Kallmeyer, Laura, Rainer Osswald & Robert D. Van Valin, Jr. 2013. Tree wrapping for Role and

Reference Grammar. In Glyn Morrill & Mark-Jan Nederhof (eds.), Formal Grammar (FG
2012/2013), 175–190. Springer.

Lichte, Timm & Simon Petitjean. 2015. Implementing semantic frames as typed feature structures

with XMG. Journal of Language Modelling 3(1). 185–228.

Osswald, Rainer & Laura Kallmeyer. to appear. Towards a formalization of Role and Reference

Grammar. In Rolf Kailuweit, Eva Staudinger & Lisann Künkel (eds.), Applying and expanding Role
and Reference Grammar, Freiburg University Press.

	anm0:

