Polysemy and Coercion - A Frame-based Approach Using LTAG and Hybrid Logic

William Babonnaud ${ }^{1}$, Laura Kallmeyer ${ }^{2}$ \& Rainer Osswald ${ }^{2}$

${ }^{1}$ ENS Cachan, ${ }^{2}$ Heinrich-Heine-Universität Düsseldorf

Logical Aspects of Computational Linguistics December 5-7, 2016

Nancy, France
universite PARIS-SACLAY

Table of contents

(1) Introduction
(2) LTAG and frames
(3) Hybrid logic for frames
(4) Coercion, selection and dot objects
(5) Further examples of coercion
(6) Conclusion

Introduction

We assume a syntax-semantics interface that is such that

- semantic composition is triggered by syntactic composition,
- every meaning component is linked to some fragment of the syntactic structure, and
- semantic composition is monotonic.

Introduction

We assume a syntax-semantics interface that is such that

- semantic composition is triggered by syntactic composition,
- every meaning component is linked to some fragment of the syntactic structure, and
- semantic composition is monotonic.

Particularly challenging: coercion phenomena, where meaning "changes" in an apparently non-monotonic way, oftentimes explained with the presence of some operator that does not have a syntactic counterpart.

Introduction

We assume a syntax-semantics interface that is such that

- semantic composition is triggered by syntactic composition,
- every meaning component is linked to some fragment of the syntactic structure, and
- semantic composition is monotonic.

Particularly challenging: coercion phenomena, where meaning "changes" in an apparently non-monotonic way, oftentimes explained with the presence of some operator that does not have a syntactic counterpart.
(1) a. Mary began the book.
b. John left the party.
c. Mary mastered the heavy book on magic.

Introduction

We propose to use frames as a way to represent rich lexical structures.

- Frames are a representation format of conceptual and lexical knowledge.
- They are commonly presented as semantic graphs with labelled nodes and edges where nodes correspond to entities (individuals, events, ...) and edges to (functional or non-functional) relations between these entities.

Introduction

We propose to use frames as a way to represent rich lexical structures.

■ Frames are a representation format of conceptual and lexical knowledge.

- They are commonly presented as semantic graphs with labelled nodes and edges where nodes correspond to entities (individuals, events, ...) and edges to (functional or non-functional) relations between these entities.

Introduction

We propose to use frames as a way to represent rich lexical structures.

- Frames are a representation format of conceptual and lexical knowledge.
- They are commonly presented as semantic graphs with labelled nodes and edges where nodes correspond to entities (individuals, events, ...) and edges to (functional or non-functional) relations between these entities.

- Frames can be formalized as extended typed feature structures.

Introduction

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).

Introduction

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

Introduction

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

Introduction

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

Introduction

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

Introduction

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

Introduction

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

Introduction

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

Introduction

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

LTAG and frames

Lexicalized Tree Adjoining Grammar (LTAG, Joshi \& Schabes (1997); Abeillé \& Rambow (2000)):

- Finite set of elementary trees.
- Larger trees are derived via the tree composition operations substitution (replacing a leaf with a new tree) and adjunction (replacing an internal node with a new tree).

LTAG and frames

Syntax semantics interface (Kallmeyer \& Osswald, 2013; Kallmeyer et al., 2016):

- Link a semantic representation to an entire elementary tree.

■ Semantic representations: frames, expressed as typed feature structures, or rather HL formulas that describe frames.

- Interface features relate nodes in the syntactic tree to nodes in the frame graph.
- Model composition by unifications triggered by substitution and adjunction.

Hybrid logic for frames

Hybrid Logic is an extended version of modal logic (Blackburn et al., 2007)

- Modal logic has been proposed as a logic for feature structures (Blackburn, 1993).
- It supports the local perspective on graphs that we adopt when talking about frames: Formulas are evaluated in a specific node.
- Extensions of modal logic allow to incorporate the logical operators we need. This leads to hybrid logic (HL, Areces \& ten Cate, 2007)

Hybrid logic for frames

Model \mathcal{M}_{1} :

Hybrid logic for frames

Model \mathcal{M}_{1} :

- region is true in the two nodes on the right at the bottom.
- 〈AGENT \rangle man is true at the locomotion node i.
- locomotion $\wedge\langle$ MANNER \rangle walking $\wedge\langle\mathrm{PATH}\rangle\langle\mathrm{ENDP}\rangle \top$ is also true at the locomotion node i.

Hybrid logic for frames

Model \mathcal{M}_{1} :

- region is true in the two nodes on the right at the bottom.
- 〈AGENT \rangle man is true at the locomotion node i.
- locomotion $\wedge\langle$ MANNER \rangle walking $\wedge\langle\mathrm{PATH}\rangle\langle\mathrm{ENDP}\rangle$ T is also true at the locomotion node i.

HL extends this with

- the possibility to name nodes in order to go back to them without following a specific path;
- quantification over nodes.

Hybrid logic for frames

Given:

- Rel $=$ Func \cup PropRel (functional/non-functionsl relational symbols),
- Type (type symbols = propositional variables),
- Nom (nominals = node names), Nvar (node variables), Node := Nom \cup Nvar.

Forms ::= T $|p| n|\langle R\rangle \phi| \exists \phi\left|@_{n} \phi\right| \downarrow x . \phi|\exists x . \phi| \neg \phi \mid \phi_{1} \wedge \phi_{2}$ with $p \in$ Type, $n \in$ Node, $R \in \operatorname{Rel}, \phi, \phi_{1}, \phi_{2} \in$ Forms.

Hybrid logic for frames

The truth of a formula is defined wrt. a specific node w of a model \mathcal{M} and some assignment mapping Node to the nodes in \mathcal{M}. (For Nvar, this is g.)

Hybrid logic for frames

- $\exists \phi$ is true in w if there exists a w^{\prime} in \mathcal{M} that makes ϕ true. I.e., we move into some node in our frame and there ϕ is true. \exists house is true in any node in \mathcal{M}_{1}.

Hybrid logic for frames

- $\exists \phi$ is true in w if there exists a w^{\prime} in \mathcal{M} that makes ϕ true.
I.e., we move into some node in our frame and there ϕ is true.
\exists house is true in any node in \mathcal{M}_{1}.
As usual: $\forall \phi \equiv \neg \exists(\neg \phi)$
$\forall($ path $\rightarrow\langle$ ENDP $\rangle T)$ is true in any node in \mathcal{M}_{1}.

Hybrid logic for frames

- $\exists \phi$ is true in w if there exists a w^{\prime} in \mathcal{M} that makes ϕ true. I.e., we move into some node in our frame and there ϕ is true. \exists house is true in any node in \mathcal{M}_{1}.
As usual: $\forall \phi \equiv \neg \boldsymbol{\exists}(\neg \phi)$
$\forall($ path $\rightarrow\langle$ ENDP $\rangle T)$ is true in any node in \mathcal{M}_{1}.
- $@_{n} \phi$ is true in w if ϕ is true in the node assigned to n.
I.e., we move into the (unique) node named n and there, ϕ is true.
$@_{i}$ locomotion is true in any node in \mathcal{M}_{1}.

Hybrid logic for frames

- $\downarrow x . \phi$ is true in w if ϕ is true in w under the assignment g_{w}^{x}. I.e., we call the node we are located at x, and then ϕ is true in that node.
\langle PATH $\rangle\langle$ ENDP $\rangle\langle$ part-of $\rangle \downarrow x .($ region $\wedge \exists($ house $\wedge\langle$ AT-REGION $\rangle x))$
is true in the locomotion node in \mathcal{M}_{1}.

Hybrid logic for frames

- $\exists x . \phi$ is true in w if there is a w^{\prime} such that ϕ is true in w under an assignment $g_{w^{\prime}}^{x}$.
I.e., there is a node that we name x but for the evaluation of ϕ, we do not move to that node.
$\exists x .\langle$ PATH $\rangle\langle$ ENDP $\rangle\langle$ part-of $\rangle(x \wedge$ region $) \wedge \exists($ house $\wedge\langle$ AT-REGION $\rangle x)$ is true in the locomotion node in \mathcal{M}_{1}.

Polysemy, dot objects and coercion

(2) a. The book is heavy.
phys-obj
b. The book is interesting.
book is inherently polysemous between a physical object reading and an information content reading (dot object, Pustejovsky, 1998).

Polysemy, dot objects and coercion

(2) a. The book is heavy.
phys-obj
b. The book is interesting.
book is inherently polysemous between a physical object reading and an information content reading (dot object, Pustejovsky, 1998).
(3) a. John read the book.
b. John read the story.
c. John read the blackboard.

Polysemy, dot objects and coercion

(2) a. The book is heavy.
b. The book is interesting.
book is inherently polysemous between a physical object reading and an information content reading (dot object, Pustejovsky, 1998).
(3) a. John read the book.
b. John read the story.
c. John read the blackboard.

- read allows for the direct selection of the dot object book, (3-a)
- It also enables coercion of its complement from the type information, (3-b), as well as the type phys-obj, (3-c).

Polysemy, dot objects and coercion

Semantics of the dot object book:

- General constraints from our frame signature:
(4) a. $\forall($ book \rightarrow info-carrier $)$
b. $\forall($ info-carrier \rightarrow phys-obj $\wedge\langle$ CONTENT \rangle information $)$
- The lexical entry of book only specifies that the word contributes an element of type book.

With (4), we infer that the book node is also of types info-carrier (supertype of book) and phys-obj (supertype of info-carrier), and it has an attribute (CONTENT) with a value of type information.

Polysemy, dot objects and coercion

Semantics of read (inspired by Pustejovsky, 1998):

- reading can be decomposed into two subevents, the action of looking at a physical object (the perception) and the action of processing the provided information (the comprehension).

Polysemy, dot objects and coercion

Semantics of read (inspired by Pustejovsky, 1998):

- reading can be decomposed into two subevents, the action of looking at a physical object (the perception) and the action of processing the provided information (the comprehension).
- The two events are linked by a non-functional temporal relation ordered-overlap.
(5) $\forall($ reading $\rightarrow \exists x .\langle$ PERC-COMP $\rangle($ perception $\wedge\langle$ ordered-overlap $\rangle x)$ $\wedge\langle$ MENT-COMP $\rangle($ comprehension $\wedge x)$)

Polysemy, dot objects and coercion

Semantics of read (inspired by Pustejovsky, 1998):

- reading can be decomposed into two subevents, the action of looking at a physical object (the perception) and the action of processing the provided information (the comprehension).
- The two events are linked by a non-functional temporal relation ordered-overlap.
(5) $\forall($ reading $\rightarrow \exists x .\langle$ PERC-COMP $\rangle($ perception $\wedge\langle$ ordered-overlap $\rangle x)$ $\wedge\langle$ MENT-COMP $\rangle($ comprehension $\wedge x)$)
- The perception component has an attribute stimulus of type phys-obj, and the comprehension node has an attribute CONTENT which refers to the information that was read. This value is also the content of the stimulus node.

Polysemy, dot objects and coercion

Semantics of read (inspired by Pustejovsky, 1998):

- reading can be decomposed into two subevents, the action of looking at a physical object (the perception) and the action of processing the provided information (the comprehension).
- The two events are linked by a non-functional temporal relation ordered-overlap.
(5) $\forall($ reading $\rightarrow \exists x .\langle$ PERC-COMP $\rangle($ perception $\wedge\langle$ ordered-overlap $\rangle x)$ $\wedge\langle$ MENT-COMP $\rangle($ comprehension $\wedge x)$)
- The perception component has an attribute stimulus of type phys-obj, and the comprehension node has an attribute CONTENT which refers to the information that was read. This value is also the content of the stimulus node.
- The argument of read can provide either the stimulus of the perception (phys-obj) or its content.

Polysemy, dot objects and coercion

Polysemy, dot objects and coercion

$$
\begin{aligned}
& l_{0}: \exists x . \exists y . \exists(\text { reading } \wedge\langle\text { AGENT }\rangle \text { 0 } \\
& \wedge\langle\text { PERC-COMP }\rangle\langle\text { STIMULUS }\rangle x \wedge\langle\text { MENT-COMP }\rangle\langle\text { CONTENT }\rangle y \\
& \wedge @_{x}(\text { phys-obj } \wedge\langle\text { CONTENT }\rangle(\text { information } \wedge y)) \\
& \wedge(1 \leftrightarrow x \vee 1 \leftrightarrow y))
\end{aligned}
$$

Polysemy, dot objects and coercion

$$
\begin{aligned}
& l_{0}: \exists x . \exists y . \exists(\text { reading } \wedge\langle\text { AGENT }\rangle i \\
& \wedge\langle\text { PERC-COMP }\rangle\langle\text { STIMULUS }\rangle x \wedge\langle\text { MENT-COMP }\rangle\langle\text { CONTENT }\rangle y \\
& \wedge @_{x}(\text { phys-obj } \wedge\langle\text { CONTENT }\rangle(\text { information } \wedge y)) \\
& \wedge(1 \leftrightarrow x \vee 1 \leftrightarrow y)) \\
& @_{i}(\text { person } \wedge\langle\text { NAME }\rangle \text { John }) \\
& -\mathrm{NP}_{[\mathrm{I}=z, \mathrm{P}=[2]} \\
& \text { the book } \\
& \exists(\downarrow \text { z.book^ 3) }
\end{aligned}
$$

Polysemy, dot objects and coercion

Polysemy, dot objects and coercion

Polysemy, dot objects and coercion

Polysemy, dot objects and coercion

(6) John read the story

- We have
(7) a. \forall (story \rightarrow information)
b. $\quad \boldsymbol{\forall}($ phys-obj \rightarrow information $)$
- Therefore, when combining story as a direct object with the above tree-frame pair for read, we obtain $y \leftrightarrow z$.

Polysemy, dot objects and coercion

(6) John read the story

- We have
(7) a. \forall (story \rightarrow information)
b. $\quad \boldsymbol{\forall}($ phys-obj \rightarrow information $)$
- Therefore, when combining story as a direct object with the above tree-frame pair for read, we obtain $y \leftrightarrow z$.
- In addition, from the reading frame, we infer that there is a physical object that the story is written on and that John perceives this object while comprehending the story.
- In other words, the physical object is not contributed by the lexical entry of story but by coercion, which means in our case by unification and subsequent extension of frames.

Further examples of coercion

（8）John left the party．
leaving has a 〈THEME \rangle attribute that is of type location．It is either the frame provided by the object NP or the value of the 〈Location〉 attribute in that frame．

Further examples of coercion

（8）John left the party．
leaving has a 〈THEME〉 attribute that is of type location．It is either the frame provided by the object NP or the value of the 〈Location〉 attribute in that frame．

Further examples of coercion

(9) Mary mastered the heavy book on magic.

Both heavy and on magic act as modifiers of book, but on its different components. The semantics of on (simplified here) allows for overwriting the information aspect of the modified noun.

Further examples of coercion

(9) Mary mastered the heavy book on magic.

Both heavy and on magic act as modifiers of book, but on its different components. The semantics of on (simplified here) allows for overwriting the information aspect of the modified noun.

$$
\begin{aligned}
l_{2}: & 1 \\
& \wedge \exists x \cdot(x \vee\langle\text { CONTENT }\rangle x) \\
& \wedge @_{x}(\text { knowledge } \wedge\langle\text { TOPIC }\rangle \boxed{2})
\end{aligned}
$$

Further examples of coercion

(9) Mary mastered the heavy book on magic.

Both heavy and on magic act as modifiers of book, but on its different components. The semantics of on (simplified here) allows for overwriting the information aspect of the modified noun.

$$
\begin{aligned}
l_{2}: & 1 \\
& \wedge \exists x \cdot(x \vee\langle\text { CONTENT }\rangle x) \\
& \wedge @_{x}(\text { knowledge } \wedge\langle\text { TOPIC }\rangle \boxed{2})
\end{aligned}
$$

(10) $\boldsymbol{\forall}($ knowledge \rightarrow information $\wedge\langle$ TOPIC $\rangle \top)$

Conclusion

- Frames as semantic representations allow to describe rich semantic structures. The constraints arising from the frame signature can capture various generalizations.

Conclusion

■ Frames as semantic representations allow to describe rich semantic structures. The constraints arising from the frame signature can capture various generalizations.

- We use underspecified HL formulas in order to describe frames. HL allows in particular quantification over frame nodes and thereby also over subevents, which is important for characterizing rich event structures.

Conclusion

■ Frames as semantic representations allow to describe rich semantic structures. The constraints arising from the frame signature can capture various generalizations.

- We use underspecified HL formulas in order to describe frames. HL allows in particular quantification over frame nodes and thereby also over subevents, which is important for characterizing rich event structures.
- This flexible architecture allows to account for polysemy and for different coercion phenomena in a monotonic and compositional way, without assuming any additional operators that are not related to syntactic structure and syntactic operations.

Thank you!

Abeillé, Anne \& Owen Rambow. 2000. Tree Adjoining Grammar: An Overview. In Anne Abeillé \& Owen Rambow (eds.), Tree adjoining grammars: Formalisms, linguistic analysis and processing, 1-68. CSLI.

Areces, Carlos \& Balder ten Cate. 2007. Hybrid logics. In Blackburn et al. (2007) chap. 14, 821-868. doi:10.1016/S1570-2464(07)80017-6.

Blackburn, Patrick. 1993. Modal logic and attribute value structures. In Maarten de Rijke (ed.), Diamonds and defaults, 19-65. Kluwer, Dordrecht.

Blackburn, Patrick, Johan Van Benthem \& Frank Wolter (eds.). 2007. Handbook of modal logic, vol. 3 Studies in Logic and Practical Reasoning. Elsevier.

Joshi, Aravind K. \& Yves Schabes. 1997. Tree-Adjoning Grammars. In G. Rozenberg \& A. Salomaa (eds.), Handbook of formal languages, 69-123. Berlin: Springer.
Kallmeyer, Laura \& Rainer Osswald. 2013. Syntax-driven semantic frame composition in Lexicalized Tree Adjoining Grammars. Journal of Language Modelling 1(2). 267-330.

Kallmeyer, Laura, Rainer Osswald \& Sylvain Pogodalla. 2016. For-adverbials and aspectual interpretation: An LTAG analysis using hybrid logic and frame semantics. In Christopher Piñón (ed.), Empirical issues in syntax and semantics eiss, vol. 11, .

Pustejovsky, James. 1998. The semantics of lexical underspecification. Folia Linguistica 32(3-4). 323-348.

