Polysemy and Coercion – A Frame-based Approach Using LTAG and Hybrid Logic

William Babonnaud¹, Laura Kallmeyer² & Rainer Osswald²

¹ENS Cachan, ²Heinrich-Heine-Universität Düsseldorf

Logical Aspects of Computational Linguistics December 5-7, 2016 Nancy, France

Table of contents

- 2 LTAG and frames
- 3 Hybrid logic for frames
- 4 Coercion, selection and dot objects
- 5 Further examples of coercion

We assume a syntax-semantics interface that is such that

- semantic composition is triggered by syntactic composition,
- every meaning component is linked to some fragment of the syntactic structure, and
- semantic composition is monotonic.

We assume a syntax-semantics interface that is such that

- semantic composition is triggered by syntactic composition,
- every meaning component is linked to some fragment of the syntactic structure, and
- semantic composition is monotonic.

Particularly challenging: **coercion** phenomena, where meaning "changes" in an apparently non-monotonic way, oftentimes explained with the presence of some operator that does not have a syntactic counterpart.

We assume a syntax-semantics interface that is such that

- semantic composition is triggered by syntactic composition,
- every meaning component is linked to some fragment of the syntactic structure, and
- semantic composition is monotonic.

Particularly challenging: **coercion** phenomena, where meaning "changes" in an apparently non-monotonic way, oftentimes explained with the presence of some operator that does not have a syntactic counterpart.

- (1) a. Mary began the book.
 - b. John left the party.
 - c. Mary mastered the heavy book on magic.

We propose to use **frames** as a way to represent rich lexical structures.

- Frames are a representation format of conceptual and lexical knowledge.
- They are commonly presented as semantic graphs with labelled nodes and edges where nodes correspond to entities (individuals, events, ...) and edges to (functional or non-functional) relations between these entities.

We propose to use **frames** as a way to represent rich lexical structures.

- Frames are a representation format of conceptual and lexical knowledge.
- They are commonly presented as semantic graphs with labelled nodes and edges where nodes correspond to entities (individuals, events, ...) and edges to (functional or non-functional) relations between these entities.

We propose to use **frames** as a way to represent rich lexical structures.

- Frames are a representation format of conceptual and lexical knowledge.
- They are commonly presented as semantic graphs with labelled nodes and edges where nodes correspond to entities (individuals, events, ...) and edges to (functional or non-functional) relations between these entities.

Frames can be formalized as extended typed feature structures.

 In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: **Hybrid Logic (HL)** and **underspecifica-tion** in the sense of hole semantics.

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

- In combination with frames, we need a syntactic framework that allows to represent constructions. Our choice: Lexicalized Tree Adjoining Grammars (LTAG).
- Furthermore, we need the possibility of underspecification and quantification concerning the way we formulate constraints on frames. Our choice: Hybrid Logic (HL) and underspecification in the sense of hole semantics.

LTAG and frames

Lexicalized Tree Adjoining Grammar (LTAG, Joshi & Schabes (1997); Abeillé & Rambow (2000)):

- Finite set of **elementary trees**.
- Larger trees are derived via the tree composition operations substitution (replacing a leaf with a new tree) and adjunction (replacing an internal node with a new tree).

Syntax semantics interface (Kallmeyer & Osswald, 2013; Kallmeyer et al., 2016):

- Link a semantic representation to an entire elementary tree.
- Semantic representations: frames, expressed as typed feature structures, or rather HL formulas that describe frames.
- Interface features relate nodes in the syntactic tree to nodes in the frame graph.
- Model composition by unifications triggered by substitution and adjunction.

Hybrid Logic is an extended version of *modal logic* (Blackburn et al., 2007)

- Modal logic has been proposed as a logic for feature structures (Blackburn, 1993).
- It supports the local perspective on graphs that we adopt when talking about frames: Formulas are evaluated in a specific node.
- Extensions of modal logic allow to incorporate the logical operators we need. This leads to *hybrid logic* (HL, Areces & ten Cate, 2007)

Model \mathcal{M}_1 :

- *region* is true in the two nodes on the right at the bottom.
- (AGENT) *man* is true at the *locomotion* node *i*.
- *locomotion* ∧ (MANNER) *walking* ∧ (PATH)(ENDP) ⊤ is also true at the *locomotion* node *i*.

- *region* is true in the two nodes on the right at the bottom.
- (AGENT) *man* is true at the *locomotion* node *i*.
- *locomotion* ∧ (MANNER) *walking* ∧ (PATH)(ENDP) T is also true at the *locomotion* node *i*.

HL extends this with

- the possibility to name nodes in order to go back to them without following a specific path;
- quantification over nodes.

Given:

- Rel = Func ∪ PropRel (functional/non-functionsl relational symbols),
- Type (type symbols = propositional variables),
- Nom (nominals = node names), Nvar (node variables), Node := Nom ∪ Nvar.

Forms ::= $\top |p| n |\langle R \rangle \phi | \exists \phi | @_n \phi | \downarrow x.\phi | \exists x.\phi | \neg \phi | \phi_1 \land \phi_2$

with $p \in \text{Type}$, $n \in \text{Node}$, $R \in \text{Rel}$, ϕ , ϕ_1 , $\phi_2 \in \text{Forms}$.

The truth of a formula is defined wrt. a specific node w of a model \mathcal{M} and some assignment mapping Node to the nodes in \mathcal{M} . (For Nvar, this is g.)

J ϕ is true in *w* if there exists a *w'* in \mathcal{M} that makes ϕ true. I.e., we move into some node in our frame and there ϕ is true. **J***house* is true in any node in \mathcal{M}_1 .

∃φ is true in w if there exists a w' in M that makes φ true.
 I.e., we move into some node in our frame and there φ is true.
 ∃house is true in any node in M₁.
 As usual: ∀φ ≡ ¬∃(¬φ)
 ∀(path → ⟨ENDP⟩T) is true in any node in M₁.

- ∃φ is true in w if there exists a w' in M that makes φ true.
 I.e., we move into some node in our frame and there φ is true.
 ∃house is true in any node in M₁.
 As usual: ∀φ ≡ ¬∃(¬φ)
 ∀(path → ⟨ENDP⟩⊤) is true in any node in M₁.
- Q_nφ is true in w if φ is true in the node assigned to n.
 I.e., we move into the (unique) node named n and there, φ is true.

 $@_i locomotion$ is true in any node in \mathcal{M}_1 .

↓ *x*. φ is true in *w* if φ is true in *w* under the assignment g^x_w.
 I.e., we call the node we are located at *x*, and then φ is true in that node.

 $\langle PATH \rangle \langle ENDP \rangle \langle part-of \rangle \downarrow x.(region \land \exists (house \land \langle AT-REGION \rangle x))$ is true in the *locomotion* node in \mathcal{M}_1 .

■ $\exists x.\phi$ is true in *w* if there is a *w*' such that ϕ is true in *w* under an assignment $g_{w'}^{x}$.

I.e., there is a node that we name x but for the evaluation of $\phi,$ we do not move to that node.

 $\exists x. \langle PATH \rangle \langle ENDP \rangle \langle part-of \rangle (x \land region) \land \exists (house \land \langle AT-REGION \rangle x)$ is true in the *locomotion* node in \mathcal{M}_1 .

- (2) a. The book is heavy.
 - b. The book is interesting.

phys-obj information

book is inherently polysemous between a physical object reading and an information content reading (**dot object**, Pustejovsky, 1998).

- (2) a. The book is heavy.
 - b. The book is interesting.

phys-obj information

book is inherently polysemous between a physical object reading and an information content reading (**dot object**, Pustejovsky, 1998).

- (3) a. John read the book.
 - b. John read the story.
 - c. John read the blackboard.

- (2) a. The book is heavy.
 - b. The book is interesting.

phys-obj information

book is inherently polysemous between a physical object reading and an information content reading (**dot object**, Pustejovsky, 1998).

- (3) a. John read the book.
 - b. John read the story.
 - c. John read the blackboard.
 - *read* allows for the direct selection of the dot object *book*, (3-a)
 - It also enables coercion of its complement from the type *information*, (3-b), as well as the type *phys-obj*, (3-c).

Semantics of the dot object *book*:

- General constraints from our frame signature:
 - (4) a. \forall (book \rightarrow info-carrier)
 - b. \forall (*info-carrier* \rightarrow *phys-obj* \land (CONTENT)*information*)
- The lexical entry of *book* only specifies that the word contributes an element of type *book*.

With (4), we infer that the *book* node is also of types *info-carrier* (supertype of *book*) and *phys-obj* (supertype of *info-carrier*), and it has an attribute (CONTENT) with a value of type *information*.

Semantics of *read* (inspired by Pustejovsky, 1998):

reading can be decomposed into two subevents, the action of looking at a physical object (the **perception**) and the action of processing the provided information (the **comprehension**).

Semantics of *read* (inspired by Pustejovsky, 1998):

- *reading* can be decomposed into two subevents, the action of looking at a physical object (the **perception**) and the action of processing the provided information (the **comprehension**).
- The two events are linked by a non-functional temporal relation *ordered-overlap*.

(5) \forall (reading $\rightarrow \exists x. \langle \text{PERC-COMP} \rangle$ (perception $\land \langle \text{ordered-overlap} \rangle x$) $\land \langle \text{MENT-COMP} \rangle$ (comprehension $\land x$))

Semantics of *read* (inspired by Pustejovsky, 1998):

- *reading* can be decomposed into two subevents, the action of looking at a physical object (the **perception**) and the action of processing the provided information (the **comprehension**).
- The two events are linked by a non-functional temporal relation *ordered-overlap*.

(5) \forall (reading $\rightarrow \exists x. \langle \text{PERC-COMP} \rangle$ (perception $\land \langle \text{ordered-overlap} \rangle x$) $\land \langle \text{MENT-COMP} \rangle$ (comprehension $\land x$))

• The *perception* component has an attribute STIMULUS of type *phys-obj*, and the *comprehension* node has an attribute CONTENT which refers to the information that was read. This value is also the CONTENT of the STIMULUS node.

Semantics of *read* (inspired by Pustejovsky, 1998):

- *reading* can be decomposed into two subevents, the action of looking at a physical object (the **perception**) and the action of processing the provided information (the **comprehension**).
- The two events are linked by a non-functional temporal relation *ordered-overlap*.

(5) \forall (reading $\rightarrow \exists x. \langle \text{PERC-COMP} \rangle$ (perception $\land \langle \text{ordered-overlap} \rangle x$) $\land \langle \text{MENT-COMP} \rangle$ (comprehension $\land x$))

- The *perception* component has an attribute STIMULUS of type *phys-obj*, and the *comprehension* node has an attribute CONTENT which refers to the information that was read. This value is also the CONTENT of the STIMULUS node.
- The argument of *read* can provide either the stimulus of the perception (*phys-obj*) or its content.

 $l_0: \exists x. \exists y. \exists (reading \land \langle AGENT \rangle i$ \land (perc-comp) (stimulus) $x \land$ (ment-comp) (content) y $\wedge @_x(phys-obj \land (CONTENT)(information \land y))$ $\wedge (z \leftrightarrow x \lor z \leftrightarrow y))$ S $@_i(person \land (NAME) fohn)$ $\exists (\downarrow z.book \land l_0)$ $NP^{[I=i]}$ VP $NP^{[I=z,P=l_0]}$ John

read

the book

 $x \leftrightarrow z$ because of the types

(6) John read the story

We have

(7) a.
$$\forall (story \rightarrow information)$$

b. $\forall (phys-obj \rightarrow \neg information)$

■ Therefore, when combining *story* as a direct object with the above tree-frame pair for *read*, we obtain *y* ↔ *z*.

(6) John read the story

- We have
 - (7) a. $\forall (story \rightarrow information)$ b. $\forall (phys-obj \rightarrow \neg information)$
- Therefore, when combining *story* as a direct object with the above tree-frame pair for *read*, we obtain $y \leftrightarrow z$.
- In addition, from the *reading* frame, we infer that there is a physical object that the story is written on and that John perceives this object while comprehending the story.
- In other words, the physical object is not contributed by the lexical entry of *story* but by coercion, which means in our case by unification and subsequent extension of frames.

(8) John left the party.

leaving has a $\langle THEME \rangle$ attribute that is of type *location*. It is either the frame provided by the object NP or the value of the $\langle LOCATION \rangle$ attribute in that frame.

(8) John left the party.

leaving has a $\langle THEME \rangle$ attribute that is of type *location*. It is either the frame provided by the object NP or the value of the $\langle LOCATION \rangle$ attribute in that frame.

Further examples of coercion

(9) Mary mastered the heavy book on magic.

Both *heavy* and *on magic* act as modifiers of *book*, but on its different components. The semantics of *on* (simplified here) allows for overwriting the *information* aspect of the modified noun.

Further examples of coercion

(9) Mary mastered the heavy book on magic.

Both *heavy* and *on magic* act as modifiers of *book*, but on its different components. The semantics of *on* (simplified here) allows for overwriting the *information* aspect of the modified noun.

Further examples of coercion

(9) Mary mastered the heavy book on magic.

Both *heavy* and *on magic* act as modifiers of *book*, but on its different components. The semantics of *on* (simplified here) allows for overwriting the *information* aspect of the modified noun.

$$l_{2}: 1 \land \exists x. (x \lor (\text{content})x) \land @_{x}(knowledge \land (\text{topic})2) \qquad NP_{[P=1]}^{*} \qquad Pp \land Prep \qquad NP^{[P=2]} \land Prep \qquad NP^{$$

(10) \forall (knowledge \rightarrow information $\land \langle \text{TOPIC} \rangle \top$)

Conclusion

 Frames as semantic representations allow to describe rich semantic structures. The constraints arising from the frame signature can capture various generalizations.

Conclusion

- Frames as semantic representations allow to describe rich semantic structures. The constraints arising from the frame signature can capture various generalizations.
- We use underspecified HL formulas in order to describe frames. HL allows in particular quantification over frame nodes and thereby also over subevents, which is important for characterizing rich event structures.

Conclusion

- Frames as semantic representations allow to describe rich semantic structures. The constraints arising from the frame signature can capture various generalizations.
- We use underspecified HL formulas in order to describe frames. HL allows in particular quantification over frame nodes and thereby also over subevents, which is important for characterizing rich event structures.
- This flexible architecture allows to account for polysemy and for different coercion phenomena in a monotonic and compositional way, without assuming any additional operators that are not related to syntactic structure and syntactic operations.

Thank you!

- Abeillé, Anne & Owen Rambow. 2000. Tree Adjoining Grammar: An Overview. In Anne Abeillé & Owen Rambow (eds.), Tree adjoining grammars: Formalisms, linguistic analysis and processing, 1–68. CSLI.
- Areces, Carlos & Balder ten Cate. 2007. Hybrid logics. In Blackburn et al. (2007) chap. 14, 821–868. doi:10.1016/S1570-2464(07)80017-6.
- Blackburn, Patrick. 1993. Modal logic and attribute value structures. In Maarten de Rijke (ed.), Diamonds and defaults, 19–65. Kluwer, Dordrecht.
- Blackburn, Patrick, Johan Van Benthem & Frank Wolter (eds.). 2007. Handbook of modal logic, vol. 3 Studies in Logic and Practical Reasoning. Elsevier.
- Joshi, Aravind K. & Yves Schabes. 1997. Tree-Adjoning Grammars. In G. Rozenberg & A. Salomaa (eds.), Handbook of formal languages, 69–123. Berlin: Springer.
- Kallmeyer, Laura & Rainer Osswald. 2013. Syntax-driven semantic frame composition in Lexicalized Tree Adjoining Grammars. Journal of Language Modelling 1(2). 267–330.
- Kallmeyer, Laura, Rainer Osswald & Sylvain Pogodalla. 2016. For-adverbials and aspectual interpretation: An LTAG analysis using hybrid logic and frame semantics. In Christopher Piñón (ed.), Empirical issues in syntax and semantics eiss, vol. 11, .

Pustejovsky, James. 1998. The semantics of lexical underspecification. Folia Linguistica 32(3-4). 323-348.