
XMG: a tool for implementing frames

Timm Lichte
1
, Simon Petitjean

2
, Laura Kallmeyer

1
&

Younes Samih
1

1
University of Düsseldorf, Germany, and

2
Université d’Orléans, France

CTF14, August 26, 2014

SFB 991

1 / 24

Table of contents

1 Introduction

2 Signature and frame descriptions

3 Type hierarchy and frame constraints

4 Frame uni�cation with XMG

5 Frame descriptions and underspeci�cation

6 XMG: eXtensible MetaGrammar

7 Implementation

8 Conclusion

2 / 24

Introduction

Goal of this work: Develop a tool that allows to

1. specify frames where frames are taken to be typed base-labeled

feature structures:

Certain nodes in the frame can be labeled (in order to access

them directly),

a frame node has (possibly several) types,

and frames need not have a unique root but every frame node is

accessible from a labeled node via a path.

2. specify constraints on frames such as

possible types, attributes required for them and the types of

their values,

path identities required for certain types,

subtype relations (= type entailments) and incompatibilities of

types.

3 / 24

Introduction

The tool is part of XMG (Crabbé et al., 2013). XMG allows to specify

grammatical structures of various types: trees, semantic

representations, frames ... These di�erent structure speci�cations can

be used in combination, for instance in the context of a

syntax-semantics interface in LTAG (Lexicalized Tree Adjoining

Grammar).

Besides this, the frame component can be used on its own for

the implementation of single frames;

the uni�cation of frames (= identi�cation of their roots);

more general the identi�cation of nodes from di�erent frames,

for instance for argument insertion;

the development of theories in the form of constraints on

frames that can be compiled out into the di�erent possible

object frames predicted by the theory.

4 / 24

Signature and frame descriptions

To a large extent, the XMG frame component (Lichte and Petitjean, to

appear) implements the feature logic for base labeled feature

structures proposed in (Kallmeyer and Osswald, 2013).

A frame signature is a tuple 〈A, T , B〉 with a �nite set of attributes (or

features) A, a �nite set of elementary types T , and an in�nitely

countable set of base labels B.

Encoding in XMG:

frame_attributes = {...}

frame_types = {...}

Special types are > (true or + in XMG) and ⊥ (false or - in XMG).

Base labels can be any XMG variable (= expression starting with a ?),

for instance ?X0, ?X1, ?root,

5 / 24

Signature and frame descriptions

The syntax of frame descriptions in XMG is close to standard AVM

representations:

0



causation

cause

activityactor 1

theme 2


effect 4

[
mover 2

goal 3

]



<frame>{

?X0[causation,

cause:[activity,

actor:?X1,

theme:?X2],

effect:?X4[mover:?X2,

goal:?X3]

]}

6 / 24

Signature and frame descriptions

Important: In XMG, we describe frames, we do not give object frames.

The latter are obtained by compilation.

XMG allows to use conjunction and disjunction within the

descriptions. But neither negation nor quanti�cation.

Example:

<frame>{

?X0[causation,

cause:[activity,

actor:?X1,

theme:?X2[ball]],

effect:[motion,

mover:?X2]];

{?X1[John] | ?X1[Mary]}}

7 / 24

Signature and frame descriptions

When compiling this description with XMG (under appropriate type

constraints, e.g. nothing can be Mary and John at the same time), we

obtain the two object frames

0



causation

cause


activity

actor 1

[
Mary

]
theme 2

[
ball

]


effect

motion

mover 2

[
ball

]


0



causation

cause


activity

actor 1

[
John

]
theme 2

[
ball

]


effect

motion

mover 2

[
ball

]



8 / 24

Type hierarchy and frame constraints

Besides frame descriptions, one can express universal constraints on

frames in XMG. These can be

sub-type relations (= type hierarchy), for instance

activity -> event (“every activity is an event”)

type incompatibilities, for instance

[event,person] -> false (“nothing can be an event and a

person”)

attribute speci�cations for certain types, for instance

motion -> mover:+ (“every motion has an attribute mover”)

causation -> cause:event (“every causation has an at-

tribute cause with a value of type event”)

path identities for certain types, for instance

[activity,motion] -> actor=mover (“in a motion that is an

activity, the actor and mover are identical”)

9 / 24

Type hierarchy and frame constraints

Currently, XMG provides the following syntax for implementing this:

frame_constraints = {...}

Example:

frame_constraints = {

activity -> event,

activity -> actor: +,

motion -> event,

motion -> mover: +,

[activity,motion] <-> locomotion,

locomotion -> actor=mover,

[house,event] -> false,

[John,event] -> false,

[John,house] -> false

}

10 / 24

Type hierarchy and frame constraints

Besides the frame_constraints = ... statement, one can also

specify the type hierarchy in a more compact way. (This is not yet

supported by the implementation but will be included soon.)

frame_type_hierarchy = {

[event, [activity, actor:+, [locomotion]],

[motion, mover:+, [locomotion]]]

}

which is equivalent to

frame_constraints = {

activity -> event, activity -> actor: +,

motion -> event, motion -> mover: +,

locomotion -> activity, locomotion -> motion

}

11 / 24

Frame uni�cation with XMG

In order to unify two frames, we can give descriptions of both with

identical labels for their root nodes:

activity
actor

[
John

]t

motion

goal

[
house

]
<frame>{

?root[activity,

actor:[John]];

?root[motion,

goal:[house]]}

Compilation of this description

under the frame constraints

from slide 9 yields



activity, motion, locomotion, event

actor 1

[
John

]
mover 1

[
John

]
goal 2

[
house

]



12 / 24

Frame uni�cation with XMG

Uni�cation in the previous example amounted to identifying

root nodes.

Any other labeld nodes in frames can be identi�ed in the same

way.

In particular, argument slots can be identi�ed with the argu-

ment �lling frames.

<frame>{

?X0[motion,

mover:?X1,

goal:?X2];

?X1[John];

?X2[house]}

13 / 24

Frame descriptions and underspeci�cation

In general, frame descriptions in XMG can be highly under-

speci�ed and therefore lead to more than one object frame (=

minimal model).

In particular, frame descriptions can be used as a kind of ab-

stract meta-frames where the object frames are instances of

these meta-frames.

One application could be the de�nition of classi�catory frames
for scienti�c theory, as pursued in the CRC 991 by Gerhard

Schurz.

14 / 24

Frame descriptions and underspeci�cation

A highly simpli�ed example provided by Gerhard Schurz:

Theory of fowls:

Fowls have a beak that is either round or pointed.

Fowls have legs that are either short or long.

Fowls have feet that are either webbed or unwebbed.

The beak of a fowl is round if and only if its legs are short.

We can express this in a fowl frame description in XMG.

15 / 24

Frame descriptions and underspeci�cation

Incompatibility constraints:

frame_constraints = { [pointed,round] -> false,

[long,short] -> false,

[unwebbed,webbed] -> false }

Classi�catory frame for fowl:

<frame>{

[fowl,

beak:?B,

leg:?L,

foot:?F];

{?B[pointed] | ?B[round]};

{?L[long]|?L[short]};

{?F[unwebbed]|?F[webbed]};

{?B[round] AND ?L[short] | ?B[pointed] AND ?L[long]}}

16 / 24

Frame descriptions and underspeci�cation

Checking the predictions of such a theory can be done by compiling

out the corresponding frame description.

In the fowl case, this gives four possible fowl frames.

fowl

beak

[
round

]
leg

[
short

]
foot

[
webbed

]





fowl

beak

[
round

]
leg

[
short

]
foot

[
unwebbed

]




fowl

beak

[
pointed

]
leg

[
long

]
foot

[
webbed

]





fowl

beak

[
pointed

]
leg

[
long

]
foot

[
unwebbed

]


17 / 24

Frame descriptions and underspeci�cation

So far, dependencies between attribute values of the type “beak is

round i� leg is short” are not supported by XMG but they will be

included.

Such constaints will then be possible in the universal

frame_constraints:

frame_constraints = { [pointed,round] -> false,

[long,short] -> false,

[unwebbed,webbed] -> false,

beak:round <-> leg:short}

18 / 24

XMG: eXtensible MetaGrammar

The frame implementation tool presented so far is part of

XMG.

XMG (eXtensible MetaGrammar, Crabbé et al. 2013) stands

both for metagrammatical descriptions and the compiler for

these descriptions.

The descriptions are organized into classes, that can be reused

(i. e. “imported” or instantiated) by other classes.

Borrowing from object oriented programming, classes are en-

capsulated, which means that each class can handle the scopes

of their variables explicitly, by declaring variables and choosing

which ones to make accessible for (i. e. to “export to”) other

instantiating classes.

19 / 24

XMG: eXtensible MetaGrammar

Crucial elements of a class are the so-called dimensions. Dimen-

sions can be equipped with speci�c description languages and

are compiled independently, thereby enabling the grammar

writer to treat the levels of linguistic information separately.

The standard dimensions are <syn> for syntax, and <sem> for

semantics.

More recently, a dimension <morph> for morphological descrip-

tions has been added (Duchier et al., 2012; Lichte et al., 2013).

<frame> is the dimension used for frames.

Crucially, variables can be shared between dimensions since

they are local to the class. This way, interfaces can be modeled.

20 / 24

XMG: eXtensible MetaGrammar

class rolling

export ?X0

declare ?X0 ?X1

{<frame>{

?X0[motion,

theme:?X1,

mover:?X1,

manner:[rolling]]}}

class directionalPP

export ?X0

declare ?X0

{<frame>{

?X0[motion,

goal:+]}}

Class for

directed motion:

class directedMotion

declare ?Frame1 ?Frame2

{ ?Frame1 = rolling[];

?Frame2 = directionalPP[];

?Frame1.?X0 = ?Frame2.?X0

21 / 24

Implementation

Currently, the frame component of XMG is already running but

is still under implementation. The examples shown in this talk

are supported by the XMG compiler.

In the near future, we will develop a web-based GUI that allows

to use XMG, in particular the frame component:

Frame constraints can be entered with the syntax shown above.

Frame descriptions can be de�ned via a graphical user interface.

Object frames resulting from compilation can be viewed via the

GUI.

The XMG Frame Viewer will make use of the latest browser-

based technologies (HTML5, XSLT, XML, MathML, SVG, and

Javascript) to render AVMs.

Example of AVM viewer: slide8.html

22 / 24

Conclusion

We have presented a frame implementation tool that is part of

XMG.

The XMG frame component can be used in the context of gram-

mar development, pairing for instance frames with syntactic

trees.

It can also be used on its own for frame implementation.

A web-based GUI that allows an easy use of the tool is planned

for the near future.

23 / 24

Crabbé, B., Duchier, D., Gardent, C., Le Roux, J., and Parmentier, Y. (2013). XMG: eXtensible MetaGrammar. Computational
Linguistics, 39(3):1–66.

Duchier, D., Ekoukou, B. M., Parmentier, Y., Petitjean, S., and Schang, E. (2012). Describing morphologically rich languages

using metagrammars: a look at verbs in Ikota. In Workshop on Language Technology for Normalisation of Less-Resourced
Languages (SALTMIL 8 - AfLaT 2012), pages 55–59.

Kallmeyer, L. and Osswald, R. (2013). Syntax-driven semantic frame composition in Lexicalized Tree Adjoining Grammar.

Journal of Language Modelling, 1:267–330.

Lichte, T., Diez, A., and Petitjean, S. (2013). Coupling trees, words and frames through XMG. In Proceedings of the ESSLLI 2013
workshop on High-level Methodologies for Grammar Engineering.

Lichte, T. and Petitjean, S. (to appear). Adding semantic frames to XMG. Journal of Language Modelling.

	Introduction
	Signature and frame descriptions
	Type hierarchy and frame constraints
	Frame unification with XMG
	Frame descriptions and underspecification
	XMG: eXtensible MetaGrammar
	Implementation
	Conclusion

