Introduction to Tree Adjoining Grammar
Natural Language Syntax with TAG

Wolfgang Maier and Timm Lichte
University of Diisseldorf

DGfS-CL Fall School 2011

1st week, 2nd session

Aug 30, 2011
HEINRICH HEINE o
UNIVERSITAT DOSSELDORF SFB 991

Natural Language Syntax with TAG 1/34

Outline

© Adjunction and Substitution
© Tree Adjoining Grammar
© Adjunction Constraints

@ Derivation Trees

© Formal Properties

Natural Language Syntax with TAG 2/34

Adjunction and substitution (1)

We have seen that

© Using larger trees and allowing only substitution does not
extend the weak capacity of CFG.

© With TSGs, we cannot build satisfying lexicalized grammars.

Natural Language Syntax with TAG 3/34

Adjunction and substitution (1)

We have seen that

© Using larger trees and allowing only substitution does not
extend the weak capacity of CFG.

© With TSGs, we cannot build satisfying lexicalized grammars.

We cannot add modifiers in the middle of elementary trees, only
the leaves can be replaced with new trees.

|

Natural Language Syntax with TAG 3/34

Adjunction and substitution (1)

We have seen that

© Using larger trees and allowing only substitution does not
extend the weak capacity of CFG.

© With TSGs, we cannot build satisfying lexicalized grammars.

We cannot add modifiers in the middle of elementary trees, only
the leaves can be replaced with new trees.

|

Therefore, we now add a second operation on trees called
adjunction.

Natural Language Syntax with TAG 3/34

Adjunction and substitution (2)

Tree Adjoining Grammars (TAG)
Tree-rewriting system: set of elementary trees with two operations:

@ adjunction: replacing an internal node with a new tree.
The new tree is an auxiliary tree and has a special leaf, the

foot node.
@ substitution: replacing a leaf with a new initial tree.

Natural Language Syntax with TAG 4/34

Adjunction and substitution (2)

Tree Adjoining Grammars (TAG)
Tree-rewriting system: set of elementary trees with two operations:

@ adjunction: replacing an internal node with a new tree.
The new tree is an auxiliary tree and has a special leaf, the

foot node.
@ substitution: replacing a leaf with a new initial tree.

[Joshi et al., 1975, Joshi and Schabes, 1997]

Natural Language Syntax with TAG 4/34

Adjunction and substitution (3) _

(1) John sometimes laughs

Natural Language Syntax with TAG 5/34

Adjunction and substitution (3)

(1) John sometimes laughs

...... VP |
NP AI|3V VP* \|/
|
John sometimes laughs

Natural Language Syntax with TAG 5/34

Adjunction and substitution (3)

(1) John sometimes laughs

...... VP |
NP AI|DV VP* \l/
|
John sometimes laughs
S —~
NP VP
| /O
derived tree: John A||3V V|P
sometimes \|/
laughs

Natural Language Syntax with TAG 5/34

Adjunction and substitution (4)

Definition (Auxiliary and initial trees)

©Q A syntactic tree is an ordered labeled tree such that I(v) € N
for each vertex v with out-degree at least 1 and

I(v) € (NUT U{e}) for each leaf v.

© An auxiliary tree is a syntactic tree that has a unique leaf
marked as foot node. The foot node must have the same label
as the root node.

© An initial tree is a non-auxiliary syntactic tree.

As a convention, the foot node is marked with a “*".

Natural Language Syntax with TAG 6/34

Tree Adjoining Grammar (1)

Definition (Tree Adjoining Grammar)
A Tree Adjoining Grammar (TAG) is a tuple G = (N, T, S, 1, A)
such that
o T and N are disjoint alphabets, the terminals and
nonterminals,
@ S € N s the start symbol,
o | is a finite set of initial trees, and
@ A is a finite set of auxiliary trees.
The trees in | U A are called elementary trees.
G is lexicalized iff each elementary tree has at least one leaf with a

terminal label. |

Natural Language Syntax with TAG 7/34

Tree Adjoining Grammar (2)

@ Every elementary tree is considered a derived tree in a TAG.
Depending on whether is has a foot node or not, it is a derived
auxiliary or a derived initial tree.

Natural Language Syntax with TAG 8/34

Tree Adjoining Grammar (2)

@ Every elementary tree is considered a derived tree in a TAG.
Depending on whether is has a foot node or not, it is a derived
auxiliary or a derived initial tree.

@ In every derivation step, we pick a fresh instance of an
elementary tree from the grammar and we add derived trees
(by substitution or adjunction) to certain nodes in this tree.

Natural Language Syntax with TAG 8/34

Tree Adjoining Grammar (2)

@ Every elementary tree is considered a derived tree in a TAG.
Depending on whether is has a foot node or not, it is a derived
auxiliary or a derived initial tree.

@ In every derivation step, we pick a fresh instance of an
elementary tree from the grammar and we add derived trees
(by substitution or adjunction) to certain nodes in this tree.

@ The trees in the tree language are the derived initial trees with
root label S and only with terminal leaf labels.

We write a tree obtained by substituting or adjoining 7/ into v at
node v as y[v,v'].

Natural Language Syntax with TAG 8/34

Tree Adjoining Grammar (3)

Definition (Derived tree)
Let G=(N,T,S,1,A) be a TAG.

© Every instance v of a v € | UA is a derived tree in G.

Q For pairwise disjoint v1,...,7n,y such that vi,...,7vy, are
derived trees in G (1 < i < n) and 7 is an instance of a

~Ye € I U A containing pairwise different nodes vy, ..., vy: if
v =~[vai,m] .. [Va,Ya] is defined then ~/ is a derived tree in
G.

© These are all derived trees in G.

Note that this definition adopts a bottom-up perspective: derived
trees are added to elementary trees.

Natural Language Syntax with TAG 9/34

Tree Adjoining Grammar (4)

Definition (TAG language)

Let G=(N,T,S,I,A) bea TAG.

Natural Language Syntax with TAG 10/34

Tree Adjoining Grammar (4)

Definition (TAG language)

Let G=(N,T,S,I,A) bea TAG.

©Q The tree language L1(G) of G is the set of all derived initial
trees vy in G with root label S and only terminal leaf labels.

Natural Language Syntax with TAG 10/34

Tree Adjoining Grammar (4)

Definition (TAG language)

Let G=(N,T,S,I,A) bea TAG.
©Q The tree language L1(G) of G is the set of all derived initial
trees vy in G with root label S and only terminal leaf labels.
Q The string language Ls(G) of G is {w | there isa~y € L1(G)
such that w = yield()}.

Natural Language Syntax with TAG 10/34

Tree Adjoining Grammar (5)

Initial trees:
Qs
S
7N
NP, V|P
Qp
NP \l/
John to_sleep
Auxiliary trees:
Binf Bfin
VP VP
VAR VRN
Vv VP* Vv VP*
to_ try seems

Natural Language Syntax with TAG 11/34

Adjunction constraints (1)

TAGs as defined above are more powerful than CFG but they
cannot generate the copy language.

Natural Language Syntax with TAG 12/34

Adjunction constraints (1)

TAGs as defined above are more powerful than CFG but they
cannot generate the copy language.
In order to increase the expressive power, adjunction constraints are
introduced that specify for each node

© whether adjunction is mandatory and

© which trees can be adjoined.

Natural Language Syntax with TAG 12/34

Adjunction constraints (1)

TAGs as defined above are more powerful than CFG but they
cannot generate the copy language.
In order to increase the expressive power, adjunction constraints are
introduced that specify for each node

© whether adjunction is mandatory and

© which trees can be adjoined.
For a given node,

© the function fpu specifies whether adjunction is obligatory
(value 1) or not (value 0) and

© the function fs4 gives the set of auxiliary trees that can be
adjoined.

Natural Language Syntax with TAG 12/34

Adjunction constraints (2)

Definition (TAG with adjunction constraints)

A TAG with adjunction constraints is a tuple
G = (N, T, S, I,A, fOAy f5A> where
@ (N, T,S,1,A) is a TAG as defined above and
@ foa: {v|v is a node in somey e |UA} — {0,1} and
fsa : {v|v is a node in some y € UA} — P(A)
where P(A) is the set of subsets of A are functions such that
foa(v) = 0 and fsa(v) = 0 for every leaf v.

Natural Language Syntax with TAG 13/34

Adjunction constraints (3)

Three types of constraints are distinguished:
@ A node v with fpoa(v) =1 is said to carry a obligatory
adjunction (OA) constraint.

@ A node v with fpa(v) =0 and fsa(v) = 0 is said to carry a
null adjunction (NA) constraint.

@ A node v with fpa(v) =0 and fsa(v) # 0 and fsa(v) # A'is
said to carry a selective adjunction (SA) constraint.

Natural Language Syntax with TAG 14/34

Adjunction constraints (4)

TAG for the copy language

Natural Language Syntax with TAG 15/34

Adjunction constraints (5)

(2) John seems to sleep

S
NF{ \VP
|OA< VP
\ v/ \/P*
| to \VJ seems

Natural Language Syntax with TAG 16/34

Adjunction constraints (6)

Definition (Derived tree)

Let G = (N, T,S,1,A, foa,fsa) be a TAG with adjunction
constraints.

Q Every instance of a o € | U A is a derived tree obtained from

Ye in G.

Q For pairwise disjoint ~y1,...,%Yn,7y such that a) v1,...,7y, are
derived trees obtained from ~.... .75 in G respectively, and
b) ~v is an instance of a ve € | U A such that vi,...,v, € V

are pairwise different nodes: If

o v =7[vi,m] - -[Va, V] is defined, and
e forall 1 <i < n:if~;is an auxiliary tree, then v¢ € fsa(v;)

then ~' is a derived tree obtained from . in G
© These are all derived trees in G.

Natural Language Syntax with TAG 17/34

Adjunction constraints (7)

Definition (Tree language)

Let G = (N, T,S,1,A, foa,fsa) be a TAG with adjunction
constraints.
The tree language of G is the set of all derived initial trees v in G
such that

@ the root label of v is S,

@ foa(v) =0 for all nodes v in ~, and

o all leaves in v have terminal labels.

In the following, whenever we use the term “TAG”, this means
“TAG with adjunction constraints”.

Natural Language Syntax with TAG 18/34

Derivation trees (1)

TAG derivations are described by derivation trees:

@ For each derivation in a TAG there is a corresponding
derivation tree. This tree contains

@ nodes for all elementary trees used in the derivation, and
@ edges for all adjunctions and substitutions performed
throughout the derivation.

Natural Language Syntax with TAG 19/34

Derivation trees (1)

TAG derivations are described by derivation trees:

@ For each derivation in a TAG there is a corresponding
derivation tree. This tree contains
@ nodes for all elementary trees used in the derivation, and

@ edges for all adjunctions and substitutions performed
throughout the derivation.

@ Whenever an elementary tree v was attached to the node at
address p in the elementary tree +/, there is an edge from 7/ to
~ labeled with p.

Natural Language Syntax with TAG 19/34

Derivation trees (2)

derivation tree for the derivation of (2) John seems to sleep

sleep

J\

john seems

Natural Language Syntax with TAG 20/34

Derivation trees (3)

Derivation trees are defined in parallel to the derived trees:

Definition (Derived tree)
Let G = <N, T,S,1,A, foa, f5A> be a TAG.

© Every instance of a e € | UA is a derived tree in G.
The corresponding derivation tree is a single node with label

Ye-

Natural Language Syntax with TAG 21/34

Derivation trees (3)

Definition (Derived tree)

Q For pairwise disjoint 1, ...,%vn,7y such that a) v1,...,7y, are
derived trees whose derivation trees D1, ..., D, have root
labels ~f,....~5 resp. and «y is an elementary tree instance
such that vy,...,v, are pairwise different nodes in v with
Gorn addresses p1, ..., pn: if

o v =7[vi,m] .- [Vn,Va] is defined and
o forall 1 < i< n:if~;is an auxiliary tree, then ¢ € fsa(v;)

then ~' is a derived tree in G with a corresponding derivation
tree having a root ry with label . and the n daughter trees
Di,...,D, resp. such that the edge from ry to the root of D;

is labeled with p; for all 1 < i < n.

© These are all pairs of derived trees and derivation trees in G.

<

Natural Language Syntax with TAG 22/34

Derivation trees (4)

Derivation trees are unordered trees. They

@ uniquely determine a derived tree (but not vice versa), and

@ are context-free, i.e., for every TAG, one can find a CFG whose
tree language is, except for adding e-leaves and ordering the
trees, the set of derivation trees of the TAG.

Natural Language Syntax with TAG 23/34

Derivation trees (5)

a| Baa” S B b” S
| |
€ st N, st

Natural Language Syntax with TAG 24/34

Derivation trees (5)

a| Baa” S B b” S
| |
€ st N, st

o ¢ ¢
«)€ i Ba Ba
Ba ﬁb ﬁaz ﬁbz

Natural Language Syntax with TAG 24/34

Derivation trees (5)

S /S,|VA /S,|VA
a | B, a” S By b7 S
| |
; Sia s Sha b

Derivation trees:

‘e Ge
« 1€ 1€ Ba Ba
63 IBb 532 ﬁbz

CEG: a—e a— B, a—=pPp Pa—e Ba — Ba

Ba— B Pb—re Bb—Ba Bp—PBb

Natural Language Syntax with TAG 24/34

Formal Properties (1)

Languages TAG can generate
o {ww|w e {a, b}*}
@ Ly:={a"b"c"d"|n> 0}

Natural Language Syntax with TAG 25/34

Formal Properties (1)

Languages TAG can generate
o {ww|w e {a, b}*}
@ Ly:={a"b"c"d"|n> 0}

Languages TAG cannot generate

o {w"|w e {a,b}*} for any n > 2.
= TAG generate only a limited amount of cross-serial
dependencies

o Ly :={afaja3...a}|n >0} for any k > 4.
= TAG can “count up to 4, not further”.

o L:={a%"|n>0}.
= TAG cannot generate languages whose word lengths grow
exponentially.

Natural Language Syntax with TAG 25/34

Formal Properties (2)

= TAG extend CFG but only in a limited way.

In order to situate a class of languages with respect to other
classes, one needs to know something about the properties of this
class. Particularly useful:

® Pumping Lemmas

o Closure Properties

Natural Language Syntax with TAG 26/34

Pumping Lemma for TAL (1)

Definition (Pumping lemma for CFL)

Let L be a context-free language. Then there is a constant c such
that for all w € L with |w| > ¢: w = xviyvaz with

) ‘V1V2| > 1,

° |viyws| < ¢, and

o foralli>0:xviyviz € L.

Natural Language Syntax with TAG 27/34

Pumping Lemma for TAL (1)

Definition (Pumping lemma for CFL)

Let L be a context-free language. Then there is a constant c such
that for all w € L with |w| > ¢: w = xviyvaz with

(4

lviva| > 1,

(]

lviywa| < ¢, and

(4

for all i > 0: xviyviz € L.

In the context-free tree, from a certain tree height on, there is
always a path with two occurences of the same non-terminal.

Natural Language Syntax with TAG 27/34

Pumping Lemma for TAL (1)

Definition (Pumping lemma for CFL)

Let L be a context-free language. Then there is a constant c such
that for all w € L with |w| > c: w = xvyyvpz with

(4

lviva| > 1,

(]

lviywa| < ¢, and

(4

for all i > 0: xviyviz € L.

In the context-free tree, from a certain tree height on, there is
always a path with two occurences of the same non-terminal.

Then the part between the two occurrences can be iterated.
This means that the strings to left and the right of this part
are pumped.

(]

Natural Language Syntax with TAG 27/34

Pumping Lemma for TAL (2)

How about TAL?

@ The TAG derivation trees are context-free.

@ Therefore, the same iteration is possible here.

Natural Language Syntax with TAG 28/34

Pumping Lemma for TAL (3)

One can show the following:

Proposition (Pumping Lemma for TAL)

If L is a TAL, then there is a constant c such that if w € L and
|w| > c, then there are x,y,z,vi,vo, w1, wa, w3, wq € T* 5. t.

) ‘V1V2W1W2W3W4| <gc,
) ‘W1W2W3W4| >1,

® x = xv1yvaz, and

o xwi'viwgywlvaw,z € L(G) for all n > 0.

Natural Language Syntax with TAG 29/34

Pumping Lemma for TAL (4)

Pumping lemmas can be used to show that certain languages are
not in a certain class.

@ To show: L = {a"b"c"d"e” | n > 0} is not a TAL.

Natural Language Syntax with TAG 30/34

Pumping Lemma for TAL (4)

Pumping lemmas can be used to show that certain languages are
not in a certain class.

@ To show: L = {a"b"c"d"e” | n > 0} is not a TAL.

@ Assume that L is a TAL and therefore satisfies the pumping
lemma with a constant c. Take w = a¢t1pcticetlgctlect!

Natural Language Syntax with TAG 30/34

Pumping Lemma for TAL (4)

Pumping lemmas can be used to show that certain languages are
not in a certain class.

@ To show: L = {a"b"c"d"e” | n > 0} is not a TAL.

@ Assume that L is a TAL and therefore satisfies the pumping
lemma with a constant c. Take w = acTl1pctlcetlgetlectt

@ According to the P.L. one can find wy, ..., wys such that

o at least one of them is not empty, and
o they can be inserted repeatedly at 4 positions into w yielding a
word in L.

Natural Language Syntax with TAG 30/34

Pumping Lemma for TAL (4)

Pumping lemmas can be used to show that certain languages are
not in a certain class.

@ To show: L = {a"b"c"d"e” | n > 0} is not a TAL.

@ Assume that L is a TAL and therefore satisfies the pumping
lemma with a constant c. Take w = acTl1pctlcetlgetlectt

@ According to the P.L. one can find wy, ..., wys such that

o at least one of them is not empty, and
o they can be inserted repeatedly at 4 positions into w yielding a
word in L.

@ One of wy, ..., ws must contain two different terminal symbols
since altogether they must contain equal numbers of as, bs,
cs, ds, and es.

Natural Language Syntax with TAG 30/34

Pumping Lemma for TAL (4)

Pumping lemmas can be used to show that certain languages are
not in a certain class.

@ To show: L = {a"b"c"d"e” | n > 0} is not a TAL.

@ Assume that L is a TAL and therefore satisfies the pumping
lemma with a constant c. Take w = acTl1pctlcetlgetlectt

@ According to the P.L. one can find wy, ..., wys such that

o at least one of them is not empty, and
o they can be inserted repeatedly at 4 positions into w yielding a
word in L.

@ One of wy, ..., ws must contain two different terminal symbols
since altogether they must contain equal numbers of as, bs,
cs, ds, and es.

@ Contradiction since at the second insertion, letters get mixed,
i.e., we get a word & L.

Natural Language Syntax with TAG 30/34

Closure Properties (1)

It is often useful to reduce a language L to a simpler language
before showing that it is not in a certain class C. This can be done
with closure properties.

Natural Language Syntax with TAG 31/34

Closure Properties (1)

It is often useful to reduce a language L to a simpler language
before showing that it is not in a certain class C. This can be done

with closure properties.

TAL are closed under
@ union, concatenation, Kleene closure and substitution.

@ homomorphisms, intersection with regular languages, and
inverse homomorphisms.

Natural Language Syntax with TAG 31/34

Closure Properties (1)

It is often useful to reduce a language L to a simpler language
before showing that it is not in a certain class C. This can be done
with closure properties.

TAL are closed under

@ union, concatenation, Kleene closure and substitution.

@ homomorphisms, intersection with regular languages, and
inverse homomorphisms.

= TALs form a substitution closed Full Abstract Family of
Languages (AFL). (Full AFL = closed under intersection with
regular languages, homomorphisms, inverse homomorphisms, union,
concatenation and Kleene star.)

Natural Language Syntax with TAG 31/34

Closure Properties (1)

It is often useful to reduce a language L to a simpler language
before showing that it is not in a certain class C. This can be done
with closure properties.

TAL are closed under

@ union, concatenation, Kleene closure and substitution.

@ homomorphisms, intersection with regular languages, and
inverse homomorphisms.

= TALs form a substitution closed Full Abstract Family of
Languages (AFL). (Full AFL = closed under intersection with
regular languages, homomorphisms, inverse homomorphisms, union,
concatenation and Kleene star.)

[Vijay-Shanker and Joshi, 1985, Vijay-Shanker, 1987]

Natural Language Syntax with TAG 31/34

Closure Properties (2)

The argumentation to show that L is not in a class C goes then as
follows:

@ Assume that L is in C.

@ Then (supposing C is closed under operation), L' = f(L) is
also in C.

o If we know that L’ is not in C, this is a contradiction.

Consequently, L is not in C.

Natural Language Syntax with TAG 32/34

Closure Properties (3)

To show: the double copy language L = {www | w € {a, b}*} is not
in TAL.

Natural Language Syntax with TAG 33/34

Closure Properties (3)

To show: the double copy language L = {www | w € {a, b}*} is not
in TAL.

@ Assume that L is in TAL.

Natural Language Syntax with TAG 33/34

Closure Properties (3)

To show: the double copy language L = {www | w € {a, b}*} is not
in TAL.

@ Assume that L is in TAL.

@ Then (since TAL is closed under intersection with regular
languages), the language
L' :=LNa*b*a*b*a*b* = {a"bMa"b™a"b™ |n,m > 0} is in
TAL as well.

Natural Language Syntax with TAG 33/34

Closure Properties (3)

To show: the double copy language L = {www | w € {a, b}*} is not
in TAL.

@ Assume that L is in TAL.

@ Then (since TAL is closed under intersection with regular
languages), the language
L' :=LNa*b*a*b*a*b* = {a"bMa"b™a"b™ |n,m > 0} is in
TAL as well.

@ Contradiction since L’ does not satisfy the pumping lemma for
TAL.

Natural Language Syntax with TAG 33/34

Closure Properties (3)

To show: the double copy language L = {www | w € {a, b}*} is not
in TAL.

@ Assume that L is in TAL.

@ Then (since TAL is closed under intersection with regular
languages), the language
L' :=LNa*b*a*b*a*b* = {a"bMa"b™a"b™ |n,m > 0} is in
TAL as well.

@ Contradiction since L’ does not satisfy the pumping lemma for
TAL.

Consequently, L is not in TAL.

Natural Language Syntax with TAG 33/34

Joshi, A. K., Levy, L. S., and Takahashi, M. (1975).

Tree Adjunct Grammars.
Journal of Computer and System Science, 10:136—163.

Joshi, A. K. and Schabes, Y. (1997).

Tree-Adjoning Grammars.

In Rozenberg, G. and Salomaa, A., editors, Handbook of Formal Languages, pages 69-123.
Springer, Berlin.

Vijay-Shanker, K. (1987).
A Study of Tree Adjoining Grammars.
PhD thesis, University of Pennsylvania.

Vijay-Shanker, K. and Joshi, A. K. (1985).

Some computational properties of Tree Adjoining Grammars.
In Proceedings of the 23rd Annual Meeting of the Association for Computational Linguistics,
pages 82-93.

	Adjunction and Substitution
	Tree Adjoining Grammar
	Adjunction Constraints
	Derivation Trees
	Formal Properties

