
Introdu
tion to Tree Adjoining GrammarNatural Language Syntax with TAGWolfgang Maier and Timm Li
hteUniversity of DüsseldorfDGfS-CL Fall S
hool 20111st week, 2nd sessionAug 30, 2011
Natural Language Syntax with TAG 1/34

Outline1 Adjun
tion and Substitution2 Tree Adjoining Grammar3 Adjun
tion Constraints4 Derivation Trees5 Formal Properties
Natural Language Syntax with TAG 2/34

Adjun
tion and substitution (1)We have seen that1 Using larger trees and allowing only substitution does notextend the weak
apa
ity of CFG.2 With TSGs, we
annot build satisfying lexi
alized grammars.

Natural Language Syntax with TAG 3/34

Adjun
tion and substitution (1)We have seen that1 Using larger trees and allowing only substitution does notextend the weak
apa
ity of CFG.2 With TSGs, we
annot build satisfying lexi
alized grammars.We
annot add modi�ers in the middle of elementary trees, onlythe leaves
an be repla
ed with new trees.
⇓

Natural Language Syntax with TAG 3/34

Adjun
tion and substitution (1)We have seen that1 Using larger trees and allowing only substitution does notextend the weak
apa
ity of CFG.2 With TSGs, we
annot build satisfying lexi
alized grammars.We
annot add modi�ers in the middle of elementary trees, onlythe leaves
an be repla
ed with new trees.
⇓Therefore, we now add a se
ond operation on trees
alledadjun
tion.Natural Language Syntax with TAG 3/34

Adjun
tion and substitution (2)
Tree Adjoining Grammars (TAG)Tree-rewriting system: set of elementary trees with two operations:adjun
tion: repla
ing an internal node with a new tree.The new tree is an auxiliary tree and has a spe
ial leaf, thefoot node.substitution: repla
ing a leaf with a new initial tree.

Natural Language Syntax with TAG 4/34

Adjun
tion and substitution (2)
Tree Adjoining Grammars (TAG)Tree-rewriting system: set of elementary trees with two operations:adjun
tion: repla
ing an internal node with a new tree.The new tree is an auxiliary tree and has a spe
ial leaf, thefoot node.substitution: repla
ing a leaf with a new initial tree.[Joshi et al., 1975, Joshi and S
habes, 1997℄

Natural Language Syntax with TAG 4/34

Adjun
tion and substitution (3)(1) John sometimes laughs

Natural Language Syntax with TAG 5/34

Adjun
tion and substitution (3)(1) John sometimes laughs
NPJohn SNP VPVPADV VP∗ Vsometimes laughs

Natural Language Syntax with TAG 5/34

Adjun
tion and substitution (3)(1) John sometimes laughs
NPJohn SNP VPVPADV VP∗ Vsometimes laughsderived tree: SNP VPJohn ADV VPsometimes VlaughsNatural Language Syntax with TAG 5/34

Adjun
tion and substitution (4)De�nition (Auxiliary and initial trees)1 A synta
ti
 tree is an ordered labeled tree su
h that l(v) ∈ Nfor ea
h vertex v with out-degree at least 1 andl(v) ∈ (N ∪ T ∪ {ε}) for ea
h leaf v .2 An auxiliary tree is a synta
ti
 tree that has a unique leafmarked as foot node. The foot node must have the same labelas the root node.3 An initial tree is a non-auxiliary synta
ti
 tree.As a
onvention, the foot node is marked with a �*�.
Natural Language Syntax with TAG 6/34

Tree Adjoining Grammar (1)De�nition (Tree Adjoining Grammar)A Tree Adjoining Grammar (TAG) is a tuple G = 〈N,T ,S , I ,A〉su
h thatT and N are disjoint alphabets, the terminals andnonterminals,S ∈ N is the start symbol,I is a �nite set of initial trees, andA is a �nite set of auxiliary trees.The trees in I ∪ A are
alled elementary trees.G is lexi
alized i� ea
h elementary tree has at least one leaf with aterminal label.Natural Language Syntax with TAG 7/34

Tree Adjoining Grammar (2)
Every elementary tree is
onsidered a derived tree in a TAG.Depending on whether is has a foot node or not, it is a derivedauxiliary or a derived initial tree.

Natural Language Syntax with TAG 8/34

Tree Adjoining Grammar (2)
Every elementary tree is
onsidered a derived tree in a TAG.Depending on whether is has a foot node or not, it is a derivedauxiliary or a derived initial tree.In every derivation step, we pi
k a fresh instan
e of anelementary tree from the grammar and we add derived trees(by substitution or adjun
tion) to
ertain nodes in this tree.

Natural Language Syntax with TAG 8/34

Tree Adjoining Grammar (2)
Every elementary tree is
onsidered a derived tree in a TAG.Depending on whether is has a foot node or not, it is a derivedauxiliary or a derived initial tree.In every derivation step, we pi
k a fresh instan
e of anelementary tree from the grammar and we add derived trees(by substitution or adjun
tion) to
ertain nodes in this tree.The trees in the tree language are the derived initial trees withroot label S and only with terminal leaf labels.We write a tree obtained by substituting or adjoining γ′ into γ atnode v as γ[v , γ′].

Natural Language Syntax with TAG 8/34

Tree Adjoining Grammar (3)De�nition (Derived tree)Let G = 〈N,T ,S , I ,A〉 be a TAG.1 Every instan
e γ of a γe ∈ I ∪ A is a derived tree in G.2 For pairwise disjoint γ1, . . . , γn, γ su
h that γ1, . . . , γn arederived trees in G (1 ≤ i ≤ n) and γ is an instan
e of a
γe ∈ I ∪ A
ontaining pairwise di�erent nodes v1, . . . , vn: if
γ′ = γ[v1, γ1] . . . [vn, γn] is de�ned then γ′ is a derived tree inG.3 These are all derived trees in G.Note that this de�nition adopts a bottom-up perspe
tive: derivedtrees are added to elementary trees.Natural Language Syntax with TAG 9/34

Tree Adjoining Grammar (4)
De�nition (TAG language)Let G = 〈N,T ,S , I ,A〉 be a TAG.

Natural Language Syntax with TAG 10/34

Tree Adjoining Grammar (4)
De�nition (TAG language)Let G = 〈N,T ,S , I ,A〉 be a TAG.1 The tree language LT (G) of G is the set of all derived initialtrees γ in G with root label S and only terminal leaf labels.

Natural Language Syntax with TAG 10/34

Tree Adjoining Grammar (4)
De�nition (TAG language)Let G = 〈N,T ,S , I ,A〉 be a TAG.1 The tree language LT (G) of G is the set of all derived initialtrees γ in G with root label S and only terminal leaf labels.2 The string language LS(G) of G is {w | there is a γ ∈ LT (G)su
h that w = yield(γ)}.

Natural Language Syntax with TAG 10/34

Tree Adjoining Grammar (5)Initial trees:
αn NPJohn

αs SNP↓ VPVto_sleepAuxiliary trees:
βinf VPV VP∗to_try β�nVPV VP∗seemsNatural Language Syntax with TAG 11/34

Adjun
tion
onstraints (1)TAGs as de�ned above are more powerful than CFG but they
annot generate the
opy language.

Natural Language Syntax with TAG 12/34

Adjun
tion
onstraints (1)TAGs as de�ned above are more powerful than CFG but they
annot generate the
opy language.In order to in
rease the expressive power, adjun
tion
onstraints areintrodu
ed that spe
ify for ea
h node1 whether adjun
tion is mandatory and2 whi
h trees
an be adjoined.
Natural Language Syntax with TAG 12/34

Adjun
tion
onstraints (1)TAGs as de�ned above are more powerful than CFG but they
annot generate the
opy language.In order to in
rease the expressive power, adjun
tion
onstraints areintrodu
ed that spe
ify for ea
h node1 whether adjun
tion is mandatory and2 whi
h trees
an be adjoined.For a given node,1 the fun
tion fOA spe
i�es whether adjun
tion is obligatory(value 1) or not (value 0) and2 the fun
tion fSA gives the set of auxiliary trees that
an beadjoined.Natural Language Syntax with TAG 12/34

Adjun
tion
onstraints (2)
De�nition (TAG with adjun
tion
onstraints)A TAG with adjun
tion
onstraints is a tupleG = 〈N,T ,S , I ,A, fOA, fSA〉 where

〈N,T ,S , I ,A〉 is a TAG as de�ned above andfOA : {v | v is a node in some γ ∈ I ∪ A} → {0, 1} andfSA : {v | v is a node in some γ ∈ I ∪ A} → P(A)where P(A) is the set of subsets of A are fun
tions su
h thatfOA(v) = 0 and fSA(v) = ∅ for every leaf v .
Natural Language Syntax with TAG 13/34

Adjun
tion
onstraints (3)Three types of
onstraints are distinguished:A node v with fOA(v) = 1 is said to
arry a obligatoryadjun
tion (OA)
onstraint.A node v with fOA(v) = 0 and fSA(v) = ∅ is said to
arry anull adjun
tion (NA)
onstraint.A node v with fOA(v) = 0 and fSA(v) 6= ∅ and fSA(v) 6= A issaid to
arry a sele
tive adjun
tion (SA)
onstraint.
Natural Language Syntax with TAG 14/34

Adjun
tion
onstraints (4)
TAG for the
opy languageS

ε

SNAa SS∗NA a SNAb SS∗NA b
Natural Language Syntax with TAG 15/34

Adjun
tion
onstraints (5)
(2) John seems to sleep

NPJohn
SNP VPOAVto Vsleep

VPV VP∗seems
Natural Language Syntax with TAG 16/34

Adjun
tion
onstraints (6)De�nition (Derived tree)Let G = 〈N,T ,S , I ,A, fOA , fSA〉 be a TAG with adjun
tion
onstraints.1 Every instan
e of a γe ∈ I ∪ A is a derived tree obtained from
γe in G .2 For pairwise disjoint γ1, . . . , γn, γ su
h that a) γ1, . . . , γn arederived trees obtained from γe1 , . . . , γen in G respe
tively, andb) γ is an instan
e of a γe ∈ I ∪ A su
h that v1, . . . , vn ∈ Vare pairwise di�erent nodes: If

γ′ = γ[v1, γ1] . . . [vn, γn] is de�ned, andfor all 1 ≤ i ≤ n: if γi is an auxiliary tree, then γei ∈ fSA(vi)then γ′ is a derived tree obtained from γe in G3 These are all derived trees in G.Natural Language Syntax with TAG 17/34

Adjun
tion
onstraints (7)De�nition (Tree language)Let G = 〈N,T ,S , I ,A, fOA , fSA〉 be a TAG with adjun
tion
onstraints.The tree language of G is the set of all derived initial trees γ in Gsu
h thatthe root label of γ is S,fOA(v) = 0 for all nodes v in γ, andall leaves in γ have terminal labels.In the following, whenever we use the term �TAG�, this means�TAG with adjun
tion
onstraints�.Natural Language Syntax with TAG 18/34

Derivation trees (1)
TAG derivations are des
ribed by derivation trees:For ea
h derivation in a TAG there is a
orrespondingderivation tree. This tree
ontainsnodes for all elementary trees used in the derivation, andedges for all adjun
tions and substitutions performedthroughout the derivation.

Natural Language Syntax with TAG 19/34

Derivation trees (1)
TAG derivations are des
ribed by derivation trees:For ea
h derivation in a TAG there is a
orrespondingderivation tree. This tree
ontainsnodes for all elementary trees used in the derivation, andedges for all adjun
tions and substitutions performedthroughout the derivation.Whenever an elementary tree γ was atta
hed to the node ataddress p in the elementary tree γ′, there is an edge from γ′ to

γ labeled with p.
Natural Language Syntax with TAG 19/34

Derivation trees (2)
derivation tree for the derivation of (2) John seems to sleepsleep1 2john seems

Natural Language Syntax with TAG 20/34

Derivation trees (3)
Derivation trees are de�ned in parallel to the derived trees:De�nition (Derived tree)Let G = 〈N,T ,S , I ,A, fOA , fSA〉 be a TAG.1 Every instan
e of a γe ∈ I ∪ A is a derived tree in G.The
orresponding derivation tree is a single node with label

γe .
Natural Language Syntax with TAG 21/34

Derivation trees (3)De�nition (Derived tree)1 For pairwise disjoint γ1, . . . , γn, γ su
h that a) γ1, . . . , γn arederived trees whose derivation trees D1, . . . ,Dn have rootlabels γe1 , . . . , γen resp. and γ is an elementary tree instan
esu
h that v1, . . . , vn are pairwise di�erent nodes in γ withGorn addresses p1, . . . , pn: if
γ′ = γ[v1, γ1] . . . [vn, γn] is de�ned andfor all 1 ≤ i ≤ n: if γi is an auxiliary tree, then γei ∈ fSA(vi)then γ′ is a derived tree in G with a
orresponding derivationtree having a root r0 with label γe and the n daughter treesD1, . . . ,Dn resp. su
h that the edge from r0 to the root of Diis labeled with pi for all 1 ≤ i ≤ n.2 These are all pairs of derived trees and derivation trees in G.Natural Language Syntax with TAG 22/34

Derivation trees (4)
Derivation trees are unordered trees. Theyuniquely determine a derived tree (but not vi
e versa), andare
ontext-free, i.e., for every TAG, one
an �nd a CFG whosetree language is, ex
ept for adding ε-leaves and ordering thetrees, the set of derivation trees of the TAG.

Natural Language Syntax with TAG 23/34

Derivation trees (5)Example
α

S
ε

βa SNAa SS∗NA a βb SNAb SS∗NA b
Natural Language Syntax with TAG 24/34

Derivation trees (5)Example
α

S
ε

βa SNAa SS∗NA a βb SNAb SS∗NA bDerivation trees:
α

α

βa ε α

βb ε α

βa
βaε2 α

βa
βb ε2 . . .

Natural Language Syntax with TAG 24/34

Derivation trees (5)Example
α

S
ε

βa SNAa SS∗NA a βb SNAb SS∗NA bDerivation trees:
α

α

βa ε α

βb ε α

βa
βaε2 α

βa
βb ε2 . . .CFG: α → ε α → βa α → βb βa → ε βa → βa

βa → βb βb → ε βb → βa βb → βb
Natural Language Syntax with TAG 24/34

Formal Properties (1)Languages TAG
an generate
{ww |w ∈ {a, b}∗}L4 := {anbn
ndn | n ≥ 0}

Natural Language Syntax with TAG 25/34

Formal Properties (1)Languages TAG
an generate
{ww |w ∈ {a, b}∗}L4 := {anbn
ndn | n ≥ 0}Languages TAG
annot generate
{wn |w ∈ {a, b}∗} for any n > 2.
⇒ TAG generate only a limited amount of
ross-serialdependen
iesLk := {an1an2an3 . . . ank | n ≥ 0} for any k > 4.
⇒ TAG
an �
ount up to 4, not further�.L := {a2n | n ≥ 0}.
⇒ TAG
annot generate languages whose word lengths growexponentially.Natural Language Syntax with TAG 25/34

Formal Properties (2)
⇒ TAG extend CFG but only in a limited way.In order to situate a
lass of languages with respe
t to other
lasses, one needs to know something about the properties of this
lass. Parti
ularly useful:Pumping LemmasClosure Properties

Natural Language Syntax with TAG 26/34

Pumping Lemma for TAL (1)De�nition (Pumping lemma for CFL)Let L be a
ontext-free language. Then there is a
onstant
 su
hthat for all w ∈ L with |w | ≥
: w = xv1yv2z with
|v1v2| ≥ 1,
|v1yv2| ≤
, andfor all i ≥ 0: xv i1yv i2z ∈ L.

Natural Language Syntax with TAG 27/34

Pumping Lemma for TAL (1)De�nition (Pumping lemma for CFL)Let L be a
ontext-free language. Then there is a
onstant
 su
hthat for all w ∈ L with |w | ≥
: w = xv1yv2z with
|v1v2| ≥ 1,
|v1yv2| ≤
, andfor all i ≥ 0: xv i1yv i2z ∈ L.In the
ontext-free tree, from a
ertain tree height on, there isalways a path with two o

uren
es of the same non-terminal.

Natural Language Syntax with TAG 27/34

Pumping Lemma for TAL (1)De�nition (Pumping lemma for CFL)Let L be a
ontext-free language. Then there is a
onstant
 su
hthat for all w ∈ L with |w | ≥
: w = xv1yv2z with
|v1v2| ≥ 1,
|v1yv2| ≤
, andfor all i ≥ 0: xv i1yv i2z ∈ L.In the
ontext-free tree, from a
ertain tree height on, there isalways a path with two o

uren
es of the same non-terminal.Then the part between the two o

urren
es
an be iterated.This means that the strings to left and the right of this partare pumped.Natural Language Syntax with TAG 27/34

Pumping Lemma for TAL (2)
How about TAL?The TAG derivation trees are
ontext-free.Therefore, the same iteration is possible here.

Natural Language Syntax with TAG 28/34

Pumping Lemma for TAL (3)One
an show the following:Proposition (Pumping Lemma for TAL)If L is a TAL, then there is a
onstant
 su
h that if w ∈ L and
|w | ≥
, then there are x , y , z , v1, v2,w1,w2,w3,w4 ∈ T ∗ s. t.

|v1v2w1w2w3w4| ≤
,
|w1w2w3w4| ≥ 1,x = xv1yv2z, andxwn1 v1wn2 ywn3 v2wn4 z ∈ L(G) for all n ≥ 0.

Natural Language Syntax with TAG 29/34

Pumping Lemma for TAL (4)Pumping lemmas
an be used to show that
ertain languages arenot in a
ertain
lass.ExampleTo show: L = {anbn
ndnen | n ≥ 0} is not a TAL.

Natural Language Syntax with TAG 30/34

Pumping Lemma for TAL (4)Pumping lemmas
an be used to show that
ertain languages arenot in a
ertain
lass.ExampleTo show: L = {anbn
ndnen | n ≥ 0} is not a TAL.Assume that L is a TAL and therefore satis�es the pumpinglemma with a
onstant
 . Take w = a
+1b
+1

+1d
+1e
+1.

Natural Language Syntax with TAG 30/34

Pumping Lemma for TAL (4)Pumping lemmas
an be used to show that
ertain languages arenot in a
ertain
lass.ExampleTo show: L = {anbn
ndnen | n ≥ 0} is not a TAL.Assume that L is a TAL and therefore satis�es the pumpinglemma with a
onstant
 . Take w = a
+1b
+1

+1d
+1e
+1.A

ording to the P.L. one
an �nd w1, . . . ,w4 su
h thatat least one of them is not empty, andthey
an be inserted repeatedly at 4 positions into w yielding aword in L.
Natural Language Syntax with TAG 30/34

Pumping Lemma for TAL (4)Pumping lemmas
an be used to show that
ertain languages arenot in a
ertain
lass.ExampleTo show: L = {anbn
ndnen | n ≥ 0} is not a TAL.Assume that L is a TAL and therefore satis�es the pumpinglemma with a
onstant
 . Take w = a
+1b
+1

+1d
+1e
+1.A

ording to the P.L. one
an �nd w1, . . . ,w4 su
h thatat least one of them is not empty, andthey
an be inserted repeatedly at 4 positions into w yielding aword in L.One of w1, . . . ,w4 must
ontain two di�erent terminal symbolssin
e altogether they must
ontain equal numbers of as, bs,
s, ds, and es.Natural Language Syntax with TAG 30/34

Pumping Lemma for TAL (4)Pumping lemmas
an be used to show that
ertain languages arenot in a
ertain
lass.ExampleTo show: L = {anbn
ndnen | n ≥ 0} is not a TAL.Assume that L is a TAL and therefore satis�es the pumpinglemma with a
onstant
 . Take w = a
+1b
+1

+1d
+1e
+1.A

ording to the P.L. one
an �nd w1, . . . ,w4 su
h thatat least one of them is not empty, andthey
an be inserted repeatedly at 4 positions into w yielding aword in L.One of w1, . . . ,w4 must
ontain two di�erent terminal symbolssin
e altogether they must
ontain equal numbers of as, bs,
s, ds, and es.Contradi
tion sin
e at the se
ond insertion, letters get mixed,i.e., we get a word 6∈ L.Natural Language Syntax with TAG 30/34

Closure Properties (1)It is often useful to redu
e a language L to a simpler languagebefore showing that it is not in a
ertain
lass C . This
an be donewith
losure properties.TAL are
losed underunion,
on
atenation, Kleene
losure and substitution.homomorphisms, interse
tion with regular languages, andinverse homomorphisms.
⇒ TALs form a substitution
losed Full Abstra
t Family ofLanguages (AFL). (Full AFL =
losed under interse
tion withregular languages, homomorphisms, inverse homomorphisms, union,
on
atenation and Kleene star.)[Vijay-Shanker and Joshi, 1985, Vijay-Shanker, 1987℄Natural Language Syntax with TAG 31/34

Closure Properties (1)It is often useful to redu
e a language L to a simpler languagebefore showing that it is not in a
ertain
lass C . This
an be donewith
losure properties.TAL are
losed underunion,
on
atenation, Kleene
losure and substitution.homomorphisms, interse
tion with regular languages, andinverse homomorphisms.
⇒ TALs form a substitution
losed Full Abstra
t Family ofLanguages (AFL). (Full AFL =
losed under interse
tion withregular languages, homomorphisms, inverse homomorphisms, union,
on
atenation and Kleene star.)[Vijay-Shanker and Joshi, 1985, Vijay-Shanker, 1987℄Natural Language Syntax with TAG 31/34

Closure Properties (1)It is often useful to redu
e a language L to a simpler languagebefore showing that it is not in a
ertain
lass C . This
an be donewith
losure properties.TAL are
losed underunion,
on
atenation, Kleene
losure and substitution.homomorphisms, interse
tion with regular languages, andinverse homomorphisms.
⇒ TALs form a substitution
losed Full Abstra
t Family ofLanguages (AFL). (Full AFL =
losed under interse
tion withregular languages, homomorphisms, inverse homomorphisms, union,
on
atenation and Kleene star.)[Vijay-Shanker and Joshi, 1985, Vijay-Shanker, 1987℄Natural Language Syntax with TAG 31/34

Closure Properties (1)It is often useful to redu
e a language L to a simpler languagebefore showing that it is not in a
ertain
lass C . This
an be donewith
losure properties.TAL are
losed underunion,
on
atenation, Kleene
losure and substitution.homomorphisms, interse
tion with regular languages, andinverse homomorphisms.
⇒ TALs form a substitution
losed Full Abstra
t Family ofLanguages (AFL). (Full AFL =
losed under interse
tion withregular languages, homomorphisms, inverse homomorphisms, union,
on
atenation and Kleene star.)[Vijay-Shanker and Joshi, 1985, Vijay-Shanker, 1987℄Natural Language Syntax with TAG 31/34

Closure Properties (2)
The argumentation to show that L is not in a
lass C goes then asfollows:Assume that L is in C .Then (supposing C is
losed under operation f), L′ = f (L) isalso in C .If we know that L′ is not in C , this is a
ontradi
tion.Consequently, L is not in C .

Natural Language Syntax with TAG 32/34

Closure Properties (3)To show: the double
opy language L = {www |w ∈ {a, b}∗} is notin TAL.Assume that L is in TAL.Then (sin
e TAL is
losed under interse
tion with regularlanguages), the languageL′ := L ∩ a∗b∗a∗b∗a∗b∗ = {anbmanbmanbm | n,m ≥ 0} is inTAL as well.Contradi
tion sin
e L′ does not satisfy the pumping lemma forTAL.Consequently, L is not in TAL.Natural Language Syntax with TAG 33/34

Closure Properties (3)To show: the double
opy language L = {www |w ∈ {a, b}∗} is notin TAL.Assume that L is in TAL.Then (sin
e TAL is
losed under interse
tion with regularlanguages), the languageL′ := L ∩ a∗b∗a∗b∗a∗b∗ = {anbmanbmanbm | n,m ≥ 0} is inTAL as well.Contradi
tion sin
e L′ does not satisfy the pumping lemma forTAL.Consequently, L is not in TAL.Natural Language Syntax with TAG 33/34

Closure Properties (3)To show: the double
opy language L = {www |w ∈ {a, b}∗} is notin TAL.Assume that L is in TAL.Then (sin
e TAL is
losed under interse
tion with regularlanguages), the languageL′ := L ∩ a∗b∗a∗b∗a∗b∗ = {anbmanbmanbm | n,m ≥ 0} is inTAL as well.Contradi
tion sin
e L′ does not satisfy the pumping lemma forTAL.Consequently, L is not in TAL.Natural Language Syntax with TAG 33/34

Closure Properties (3)To show: the double
opy language L = {www |w ∈ {a, b}∗} is notin TAL.Assume that L is in TAL.Then (sin
e TAL is
losed under interse
tion with regularlanguages), the languageL′ := L ∩ a∗b∗a∗b∗a∗b∗ = {anbmanbmanbm | n,m ≥ 0} is inTAL as well.Contradi
tion sin
e L′ does not satisfy the pumping lemma forTAL.Consequently, L is not in TAL.Natural Language Syntax with TAG 33/34

Closure Properties (3)To show: the double
opy language L = {www |w ∈ {a, b}∗} is notin TAL.Assume that L is in TAL.Then (sin
e TAL is
losed under interse
tion with regularlanguages), the languageL′ := L ∩ a∗b∗a∗b∗a∗b∗ = {anbmanbmanbm | n,m ≥ 0} is inTAL as well.Contradi
tion sin
e L′ does not satisfy the pumping lemma forTAL.Consequently, L is not in TAL.Natural Language Syntax with TAG 33/34

Joshi, A. K., Levy, L. S., and Takahashi, M. (1975).Tree Adjun
t Grammars.Journal of Computer and System S
ien
e , 10:136�163.Joshi, A. K. and S
habes, Y. (1997).Tree-Adjoning Grammars.In Rozenberg, G. and Salomaa, A., editors, Handbook of Formal Languages, pages 69�123.Springer, Berlin.Vijay-Shanker, K. (1987).A Study of Tree Adjoining Grammars.PhD thesis, University of Pennsylvania.Vijay-Shanker, K. and Joshi, A. K. (1985).Some
omputational properties of Tree Adjoining Grammars.In Pro
eedings of the 23rd Annual Meeting of the Asso
iation for Computational Linguisti
s ,pages 82�93.

	Adjunction and Substitution
	Tree Adjoining Grammar
	Adjunction Constraints
	Derivation Trees
	Formal Properties

