
Introdution to Tree Adjoining GrammarNatural Language Syntax with TAGWolfgang Maier and Timm LihteUniversity of DüsseldorfDGfS-CL Fall Shool 20111st week, 2nd sessionAug 30, 2011
Natural Language Syntax with TAG 1/34

Outline1 Adjuntion and Substitution2 Tree Adjoining Grammar3 Adjuntion Constraints4 Derivation Trees5 Formal Properties
Natural Language Syntax with TAG 2/34

Adjuntion and substitution (1)We have seen that1 Using larger trees and allowing only substitution does notextend the weak apaity of CFG.2 With TSGs, we annot build satisfying lexialized grammars.

Natural Language Syntax with TAG 3/34

Adjuntion and substitution (1)We have seen that1 Using larger trees and allowing only substitution does notextend the weak apaity of CFG.2 With TSGs, we annot build satisfying lexialized grammars.We annot add modi�ers in the middle of elementary trees, onlythe leaves an be replaed with new trees.
⇓

Natural Language Syntax with TAG 3/34

Adjuntion and substitution (1)We have seen that1 Using larger trees and allowing only substitution does notextend the weak apaity of CFG.2 With TSGs, we annot build satisfying lexialized grammars.We annot add modi�ers in the middle of elementary trees, onlythe leaves an be replaed with new trees.
⇓Therefore, we now add a seond operation on trees alledadjuntion.Natural Language Syntax with TAG 3/34

Adjuntion and substitution (2)
Tree Adjoining Grammars (TAG)Tree-rewriting system: set of elementary trees with two operations:adjuntion: replaing an internal node with a new tree.The new tree is an auxiliary tree and has a speial leaf, thefoot node.substitution: replaing a leaf with a new initial tree.

Natural Language Syntax with TAG 4/34

Adjuntion and substitution (2)
Tree Adjoining Grammars (TAG)Tree-rewriting system: set of elementary trees with two operations:adjuntion: replaing an internal node with a new tree.The new tree is an auxiliary tree and has a speial leaf, thefoot node.substitution: replaing a leaf with a new initial tree.[Joshi et al., 1975, Joshi and Shabes, 1997℄

Natural Language Syntax with TAG 4/34

Adjuntion and substitution (3)(1) John sometimes laughs

Natural Language Syntax with TAG 5/34

Adjuntion and substitution (3)(1) John sometimes laughs
NPJohn SNP VPVPADV VP∗ Vsometimes laughs

Natural Language Syntax with TAG 5/34

Adjuntion and substitution (3)(1) John sometimes laughs
NPJohn SNP VPVPADV VP∗ Vsometimes laughsderived tree: SNP VPJohn ADV VPsometimes VlaughsNatural Language Syntax with TAG 5/34

Adjuntion and substitution (4)De�nition (Auxiliary and initial trees)1 A syntati tree is an ordered labeled tree suh that l(v) ∈ Nfor eah vertex v with out-degree at least 1 andl(v) ∈ (N ∪ T ∪ {ε}) for eah leaf v .2 An auxiliary tree is a syntati tree that has a unique leafmarked as foot node. The foot node must have the same labelas the root node.3 An initial tree is a non-auxiliary syntati tree.As a onvention, the foot node is marked with a �*�.
Natural Language Syntax with TAG 6/34

Tree Adjoining Grammar (1)De�nition (Tree Adjoining Grammar)A Tree Adjoining Grammar (TAG) is a tuple G = 〈N,T ,S , I ,A〉suh thatT and N are disjoint alphabets, the terminals andnonterminals,S ∈ N is the start symbol,I is a �nite set of initial trees, andA is a �nite set of auxiliary trees.The trees in I ∪ A are alled elementary trees.G is lexialized i� eah elementary tree has at least one leaf with aterminal label.Natural Language Syntax with TAG 7/34

Tree Adjoining Grammar (2)
Every elementary tree is onsidered a derived tree in a TAG.Depending on whether is has a foot node or not, it is a derivedauxiliary or a derived initial tree.

Natural Language Syntax with TAG 8/34

Tree Adjoining Grammar (2)
Every elementary tree is onsidered a derived tree in a TAG.Depending on whether is has a foot node or not, it is a derivedauxiliary or a derived initial tree.In every derivation step, we pik a fresh instane of anelementary tree from the grammar and we add derived trees(by substitution or adjuntion) to ertain nodes in this tree.

Natural Language Syntax with TAG 8/34

Tree Adjoining Grammar (2)
Every elementary tree is onsidered a derived tree in a TAG.Depending on whether is has a foot node or not, it is a derivedauxiliary or a derived initial tree.In every derivation step, we pik a fresh instane of anelementary tree from the grammar and we add derived trees(by substitution or adjuntion) to ertain nodes in this tree.The trees in the tree language are the derived initial trees withroot label S and only with terminal leaf labels.We write a tree obtained by substituting or adjoining γ′ into γ atnode v as γ[v , γ′].

Natural Language Syntax with TAG 8/34

Tree Adjoining Grammar (3)De�nition (Derived tree)Let G = 〈N,T ,S , I ,A〉 be a TAG.1 Every instane γ of a γe ∈ I ∪ A is a derived tree in G.2 For pairwise disjoint γ1, . . . , γn, γ suh that γ1, . . . , γn arederived trees in G (1 ≤ i ≤ n) and γ is an instane of a
γe ∈ I ∪ A ontaining pairwise di�erent nodes v1, . . . , vn: if
γ′ = γ[v1, γ1] . . . [vn, γn] is de�ned then γ′ is a derived tree inG.3 These are all derived trees in G.Note that this de�nition adopts a bottom-up perspetive: derivedtrees are added to elementary trees.Natural Language Syntax with TAG 9/34

Tree Adjoining Grammar (4)
De�nition (TAG language)Let G = 〈N,T ,S , I ,A〉 be a TAG.

Natural Language Syntax with TAG 10/34

Tree Adjoining Grammar (4)
De�nition (TAG language)Let G = 〈N,T ,S , I ,A〉 be a TAG.1 The tree language LT (G) of G is the set of all derived initialtrees γ in G with root label S and only terminal leaf labels.

Natural Language Syntax with TAG 10/34

Tree Adjoining Grammar (4)
De�nition (TAG language)Let G = 〈N,T ,S , I ,A〉 be a TAG.1 The tree language LT (G) of G is the set of all derived initialtrees γ in G with root label S and only terminal leaf labels.2 The string language LS(G) of G is {w | there is a γ ∈ LT (G)suh that w = yield(γ)}.

Natural Language Syntax with TAG 10/34

Tree Adjoining Grammar (5)Initial trees:
αn NPJohn

αs SNP↓ VPVto_sleepAuxiliary trees:
βinf VPV VP∗to_try β�nVPV VP∗seemsNatural Language Syntax with TAG 11/34

Adjuntion onstraints (1)TAGs as de�ned above are more powerful than CFG but theyannot generate the opy language.

Natural Language Syntax with TAG 12/34

Adjuntion onstraints (1)TAGs as de�ned above are more powerful than CFG but theyannot generate the opy language.In order to inrease the expressive power, adjuntion onstraints areintrodued that speify for eah node1 whether adjuntion is mandatory and2 whih trees an be adjoined.
Natural Language Syntax with TAG 12/34

Adjuntion onstraints (1)TAGs as de�ned above are more powerful than CFG but theyannot generate the opy language.In order to inrease the expressive power, adjuntion onstraints areintrodued that speify for eah node1 whether adjuntion is mandatory and2 whih trees an be adjoined.For a given node,1 the funtion fOA spei�es whether adjuntion is obligatory(value 1) or not (value 0) and2 the funtion fSA gives the set of auxiliary trees that an beadjoined.Natural Language Syntax with TAG 12/34

Adjuntion onstraints (2)
De�nition (TAG with adjuntion onstraints)A TAG with adjuntion onstraints is a tupleG = 〈N,T ,S , I ,A, fOA, fSA〉 where

〈N,T ,S , I ,A〉 is a TAG as de�ned above andfOA : {v | v is a node in some γ ∈ I ∪ A} → {0, 1} andfSA : {v | v is a node in some γ ∈ I ∪ A} → P(A)where P(A) is the set of subsets of A are funtions suh thatfOA(v) = 0 and fSA(v) = ∅ for every leaf v .
Natural Language Syntax with TAG 13/34

Adjuntion onstraints (3)Three types of onstraints are distinguished:A node v with fOA(v) = 1 is said to arry a obligatoryadjuntion (OA) onstraint.A node v with fOA(v) = 0 and fSA(v) = ∅ is said to arry anull adjuntion (NA) onstraint.A node v with fOA(v) = 0 and fSA(v) 6= ∅ and fSA(v) 6= A issaid to arry a seletive adjuntion (SA) onstraint.
Natural Language Syntax with TAG 14/34

Adjuntion onstraints (4)
TAG for the opy languageS

ε

SNAa SS∗NA a SNAb SS∗NA b
Natural Language Syntax with TAG 15/34

Adjuntion onstraints (5)
(2) John seems to sleep

NPJohn
SNP VPOAVto Vsleep

VPV VP∗seems
Natural Language Syntax with TAG 16/34

Adjuntion onstraints (6)De�nition (Derived tree)Let G = 〈N,T ,S , I ,A, fOA , fSA〉 be a TAG with adjuntiononstraints.1 Every instane of a γe ∈ I ∪ A is a derived tree obtained from
γe in G .2 For pairwise disjoint γ1, . . . , γn, γ suh that a) γ1, . . . , γn arederived trees obtained from γe1 , . . . , γen in G respetively, andb) γ is an instane of a γe ∈ I ∪ A suh that v1, . . . , vn ∈ Vare pairwise di�erent nodes: If

γ′ = γ[v1, γ1] . . . [vn, γn] is de�ned, andfor all 1 ≤ i ≤ n: if γi is an auxiliary tree, then γei ∈ fSA(vi)then γ′ is a derived tree obtained from γe in G3 These are all derived trees in G.Natural Language Syntax with TAG 17/34

Adjuntion onstraints (7)De�nition (Tree language)Let G = 〈N,T ,S , I ,A, fOA , fSA〉 be a TAG with adjuntiononstraints.The tree language of G is the set of all derived initial trees γ in Gsuh thatthe root label of γ is S,fOA(v) = 0 for all nodes v in γ, andall leaves in γ have terminal labels.In the following, whenever we use the term �TAG�, this means�TAG with adjuntion onstraints�.Natural Language Syntax with TAG 18/34

Derivation trees (1)
TAG derivations are desribed by derivation trees:For eah derivation in a TAG there is a orrespondingderivation tree. This tree ontainsnodes for all elementary trees used in the derivation, andedges for all adjuntions and substitutions performedthroughout the derivation.

Natural Language Syntax with TAG 19/34

Derivation trees (1)
TAG derivations are desribed by derivation trees:For eah derivation in a TAG there is a orrespondingderivation tree. This tree ontainsnodes for all elementary trees used in the derivation, andedges for all adjuntions and substitutions performedthroughout the derivation.Whenever an elementary tree γ was attahed to the node ataddress p in the elementary tree γ′, there is an edge from γ′ to

γ labeled with p.
Natural Language Syntax with TAG 19/34

Derivation trees (2)
derivation tree for the derivation of (2) John seems to sleepsleep1 2john seems

Natural Language Syntax with TAG 20/34

Derivation trees (3)
Derivation trees are de�ned in parallel to the derived trees:De�nition (Derived tree)Let G = 〈N,T ,S , I ,A, fOA , fSA〉 be a TAG.1 Every instane of a γe ∈ I ∪ A is a derived tree in G.The orresponding derivation tree is a single node with label

γe .
Natural Language Syntax with TAG 21/34

Derivation trees (3)De�nition (Derived tree)1 For pairwise disjoint γ1, . . . , γn, γ suh that a) γ1, . . . , γn arederived trees whose derivation trees D1, . . . ,Dn have rootlabels γe1 , . . . , γen resp. and γ is an elementary tree instanesuh that v1, . . . , vn are pairwise di�erent nodes in γ withGorn addresses p1, . . . , pn: if
γ′ = γ[v1, γ1] . . . [vn, γn] is de�ned andfor all 1 ≤ i ≤ n: if γi is an auxiliary tree, then γei ∈ fSA(vi)then γ′ is a derived tree in G with a orresponding derivationtree having a root r0 with label γe and the n daughter treesD1, . . . ,Dn resp. suh that the edge from r0 to the root of Diis labeled with pi for all 1 ≤ i ≤ n.2 These are all pairs of derived trees and derivation trees in G.Natural Language Syntax with TAG 22/34

Derivation trees (4)
Derivation trees are unordered trees. Theyuniquely determine a derived tree (but not vie versa), andare ontext-free, i.e., for every TAG, one an �nd a CFG whosetree language is, exept for adding ε-leaves and ordering thetrees, the set of derivation trees of the TAG.

Natural Language Syntax with TAG 23/34

Derivation trees (5)Example
α

S
ε

βa SNAa SS∗NA a βb SNAb SS∗NA b
Natural Language Syntax with TAG 24/34

Derivation trees (5)Example
α

S
ε

βa SNAa SS∗NA a βb SNAb SS∗NA bDerivation trees:
α

α

βa ε α

βb ε α

βa
βaε2 α

βa
βb ε2 . . .

Natural Language Syntax with TAG 24/34

Derivation trees (5)Example
α

S
ε

βa SNAa SS∗NA a βb SNAb SS∗NA bDerivation trees:
α

α

βa ε α

βb ε α

βa
βaε2 α

βa
βb ε2 . . .CFG: α → ε α → βa α → βb βa → ε βa → βa

βa → βb βb → ε βb → βa βb → βb
Natural Language Syntax with TAG 24/34

Formal Properties (1)Languages TAG an generate
{ww |w ∈ {a, b}∗}L4 := {anbnndn | n ≥ 0}

Natural Language Syntax with TAG 25/34

Formal Properties (1)Languages TAG an generate
{ww |w ∈ {a, b}∗}L4 := {anbnndn | n ≥ 0}Languages TAG annot generate
{wn |w ∈ {a, b}∗} for any n > 2.
⇒ TAG generate only a limited amount of ross-serialdependeniesLk := {an1an2an3 . . . ank | n ≥ 0} for any k > 4.
⇒ TAG an �ount up to 4, not further�.L := {a2n | n ≥ 0}.
⇒ TAG annot generate languages whose word lengths growexponentially.Natural Language Syntax with TAG 25/34

Formal Properties (2)
⇒ TAG extend CFG but only in a limited way.In order to situate a lass of languages with respet to otherlasses, one needs to know something about the properties of thislass. Partiularly useful:Pumping LemmasClosure Properties

Natural Language Syntax with TAG 26/34

Pumping Lemma for TAL (1)De�nition (Pumping lemma for CFL)Let L be a ontext-free language. Then there is a onstant suhthat for all w ∈ L with |w | ≥ : w = xv1yv2z with
|v1v2| ≥ 1,
|v1yv2| ≤ , andfor all i ≥ 0: xv i1yv i2z ∈ L.

Natural Language Syntax with TAG 27/34

Pumping Lemma for TAL (1)De�nition (Pumping lemma for CFL)Let L be a ontext-free language. Then there is a onstant suhthat for all w ∈ L with |w | ≥ : w = xv1yv2z with
|v1v2| ≥ 1,
|v1yv2| ≤ , andfor all i ≥ 0: xv i1yv i2z ∈ L.In the ontext-free tree, from a ertain tree height on, there isalways a path with two ourenes of the same non-terminal.

Natural Language Syntax with TAG 27/34

Pumping Lemma for TAL (1)De�nition (Pumping lemma for CFL)Let L be a ontext-free language. Then there is a onstant suhthat for all w ∈ L with |w | ≥ : w = xv1yv2z with
|v1v2| ≥ 1,
|v1yv2| ≤ , andfor all i ≥ 0: xv i1yv i2z ∈ L.In the ontext-free tree, from a ertain tree height on, there isalways a path with two ourenes of the same non-terminal.Then the part between the two ourrenes an be iterated.This means that the strings to left and the right of this partare pumped.Natural Language Syntax with TAG 27/34

Pumping Lemma for TAL (2)
How about TAL?The TAG derivation trees are ontext-free.Therefore, the same iteration is possible here.

Natural Language Syntax with TAG 28/34

Pumping Lemma for TAL (3)One an show the following:Proposition (Pumping Lemma for TAL)If L is a TAL, then there is a onstant suh that if w ∈ L and
|w | ≥ , then there are x , y , z , v1, v2,w1,w2,w3,w4 ∈ T ∗ s. t.

|v1v2w1w2w3w4| ≤ ,
|w1w2w3w4| ≥ 1,x = xv1yv2z, andxwn1 v1wn2 ywn3 v2wn4 z ∈ L(G) for all n ≥ 0.

Natural Language Syntax with TAG 29/34

Pumping Lemma for TAL (4)Pumping lemmas an be used to show that ertain languages arenot in a ertain lass.ExampleTo show: L = {anbnndnen | n ≥ 0} is not a TAL.

Natural Language Syntax with TAG 30/34

Pumping Lemma for TAL (4)Pumping lemmas an be used to show that ertain languages arenot in a ertain lass.ExampleTo show: L = {anbnndnen | n ≥ 0} is not a TAL.Assume that L is a TAL and therefore satis�es the pumpinglemma with a onstant . Take w = a+1b+1+1d +1e+1.

Natural Language Syntax with TAG 30/34

Pumping Lemma for TAL (4)Pumping lemmas an be used to show that ertain languages arenot in a ertain lass.ExampleTo show: L = {anbnndnen | n ≥ 0} is not a TAL.Assume that L is a TAL and therefore satis�es the pumpinglemma with a onstant . Take w = a+1b+1+1d +1e+1.Aording to the P.L. one an �nd w1, . . . ,w4 suh thatat least one of them is not empty, andthey an be inserted repeatedly at 4 positions into w yielding aword in L.
Natural Language Syntax with TAG 30/34

Pumping Lemma for TAL (4)Pumping lemmas an be used to show that ertain languages arenot in a ertain lass.ExampleTo show: L = {anbnndnen | n ≥ 0} is not a TAL.Assume that L is a TAL and therefore satis�es the pumpinglemma with a onstant . Take w = a+1b+1+1d +1e+1.Aording to the P.L. one an �nd w1, . . . ,w4 suh thatat least one of them is not empty, andthey an be inserted repeatedly at 4 positions into w yielding aword in L.One of w1, . . . ,w4 must ontain two di�erent terminal symbolssine altogether they must ontain equal numbers of as, bs,s, ds, and es.Natural Language Syntax with TAG 30/34

Pumping Lemma for TAL (4)Pumping lemmas an be used to show that ertain languages arenot in a ertain lass.ExampleTo show: L = {anbnndnen | n ≥ 0} is not a TAL.Assume that L is a TAL and therefore satis�es the pumpinglemma with a onstant . Take w = a+1b+1+1d +1e+1.Aording to the P.L. one an �nd w1, . . . ,w4 suh thatat least one of them is not empty, andthey an be inserted repeatedly at 4 positions into w yielding aword in L.One of w1, . . . ,w4 must ontain two di�erent terminal symbolssine altogether they must ontain equal numbers of as, bs,s, ds, and es.Contradition sine at the seond insertion, letters get mixed,i.e., we get a word 6∈ L.Natural Language Syntax with TAG 30/34

Closure Properties (1)It is often useful to redue a language L to a simpler languagebefore showing that it is not in a ertain lass C . This an be donewith losure properties.TAL are losed underunion, onatenation, Kleene losure and substitution.homomorphisms, intersetion with regular languages, andinverse homomorphisms.
⇒ TALs form a substitution losed Full Abstrat Family ofLanguages (AFL). (Full AFL = losed under intersetion withregular languages, homomorphisms, inverse homomorphisms, union,onatenation and Kleene star.)[Vijay-Shanker and Joshi, 1985, Vijay-Shanker, 1987℄Natural Language Syntax with TAG 31/34

Closure Properties (1)It is often useful to redue a language L to a simpler languagebefore showing that it is not in a ertain lass C . This an be donewith losure properties.TAL are losed underunion, onatenation, Kleene losure and substitution.homomorphisms, intersetion with regular languages, andinverse homomorphisms.
⇒ TALs form a substitution losed Full Abstrat Family ofLanguages (AFL). (Full AFL = losed under intersetion withregular languages, homomorphisms, inverse homomorphisms, union,onatenation and Kleene star.)[Vijay-Shanker and Joshi, 1985, Vijay-Shanker, 1987℄Natural Language Syntax with TAG 31/34

Closure Properties (1)It is often useful to redue a language L to a simpler languagebefore showing that it is not in a ertain lass C . This an be donewith losure properties.TAL are losed underunion, onatenation, Kleene losure and substitution.homomorphisms, intersetion with regular languages, andinverse homomorphisms.
⇒ TALs form a substitution losed Full Abstrat Family ofLanguages (AFL). (Full AFL = losed under intersetion withregular languages, homomorphisms, inverse homomorphisms, union,onatenation and Kleene star.)[Vijay-Shanker and Joshi, 1985, Vijay-Shanker, 1987℄Natural Language Syntax with TAG 31/34

Closure Properties (1)It is often useful to redue a language L to a simpler languagebefore showing that it is not in a ertain lass C . This an be donewith losure properties.TAL are losed underunion, onatenation, Kleene losure and substitution.homomorphisms, intersetion with regular languages, andinverse homomorphisms.
⇒ TALs form a substitution losed Full Abstrat Family ofLanguages (AFL). (Full AFL = losed under intersetion withregular languages, homomorphisms, inverse homomorphisms, union,onatenation and Kleene star.)[Vijay-Shanker and Joshi, 1985, Vijay-Shanker, 1987℄Natural Language Syntax with TAG 31/34

Closure Properties (2)
The argumentation to show that L is not in a lass C goes then asfollows:Assume that L is in C .Then (supposing C is losed under operation f), L′ = f (L) isalso in C .If we know that L′ is not in C , this is a ontradition.Consequently, L is not in C .

Natural Language Syntax with TAG 32/34

Closure Properties (3)To show: the double opy language L = {www |w ∈ {a, b}∗} is notin TAL.Assume that L is in TAL.Then (sine TAL is losed under intersetion with regularlanguages), the languageL′ := L ∩ a∗b∗a∗b∗a∗b∗ = {anbmanbmanbm | n,m ≥ 0} is inTAL as well.Contradition sine L′ does not satisfy the pumping lemma forTAL.Consequently, L is not in TAL.Natural Language Syntax with TAG 33/34

Closure Properties (3)To show: the double opy language L = {www |w ∈ {a, b}∗} is notin TAL.Assume that L is in TAL.Then (sine TAL is losed under intersetion with regularlanguages), the languageL′ := L ∩ a∗b∗a∗b∗a∗b∗ = {anbmanbmanbm | n,m ≥ 0} is inTAL as well.Contradition sine L′ does not satisfy the pumping lemma forTAL.Consequently, L is not in TAL.Natural Language Syntax with TAG 33/34

Closure Properties (3)To show: the double opy language L = {www |w ∈ {a, b}∗} is notin TAL.Assume that L is in TAL.Then (sine TAL is losed under intersetion with regularlanguages), the languageL′ := L ∩ a∗b∗a∗b∗a∗b∗ = {anbmanbmanbm | n,m ≥ 0} is inTAL as well.Contradition sine L′ does not satisfy the pumping lemma forTAL.Consequently, L is not in TAL.Natural Language Syntax with TAG 33/34

Closure Properties (3)To show: the double opy language L = {www |w ∈ {a, b}∗} is notin TAL.Assume that L is in TAL.Then (sine TAL is losed under intersetion with regularlanguages), the languageL′ := L ∩ a∗b∗a∗b∗a∗b∗ = {anbmanbmanbm | n,m ≥ 0} is inTAL as well.Contradition sine L′ does not satisfy the pumping lemma forTAL.Consequently, L is not in TAL.Natural Language Syntax with TAG 33/34

Closure Properties (3)To show: the double opy language L = {www |w ∈ {a, b}∗} is notin TAL.Assume that L is in TAL.Then (sine TAL is losed under intersetion with regularlanguages), the languageL′ := L ∩ a∗b∗a∗b∗a∗b∗ = {anbmanbmanbm | n,m ≥ 0} is inTAL as well.Contradition sine L′ does not satisfy the pumping lemma forTAL.Consequently, L is not in TAL.Natural Language Syntax with TAG 33/34

Joshi, A. K., Levy, L. S., and Takahashi, M. (1975).Tree Adjunt Grammars.Journal of Computer and System Siene , 10:136�163.Joshi, A. K. and Shabes, Y. (1997).Tree-Adjoning Grammars.In Rozenberg, G. and Salomaa, A., editors, Handbook of Formal Languages, pages 69�123.Springer, Berlin.Vijay-Shanker, K. (1987).A Study of Tree Adjoining Grammars.PhD thesis, University of Pennsylvania.Vijay-Shanker, K. and Joshi, A. K. (1985).Some omputational properties of Tree Adjoining Grammars.In Proeedings of the 23rd Annual Meeting of the Assoiation for Computational Linguistis ,pages 82�93.

	Adjunction and Substitution
	Tree Adjoining Grammar
	Adjunction Constraints
	Derivation Trees
	Formal Properties

