
Introdu
tion to Tree Adjoining GrammarNatural Language Syntax with TAGWolfgang Maier and Timm Li
hteUniversity of DüsseldorfDGfS-CL Fall S
hool 20111st week, 4th sessionSep 1, 2011
Natural Language Syntax with TAG 1/25

Outline
1 Parsing as dedu
tion2 A CYK re
ognizer for TAGItemsInferen
e rulesComplexity

Natural Language Syntax with TAG 2/25

Dedu
tion systems (1)
Algorithmi
 des
riptions of parsing algorithms (e.g., inpseudo-
ode) introdu
e data stru
tures and
ontrol stru
tures.The parsing strategy of the algorithm does not depend onthem.Question: Can we separate the parsing strategy from the
ontrolstrategy?Answer: Dedu
tion systems [Shieber et al., 1995, Sikkel, 1997℄

Natural Language Syntax with TAG 3/25

Dedu
tion systems (2)Advantages:Con
entration on parsing strategy;Fa
ilitation of proofs (e.g., soundness and
ompleteness of analgorithm).Soundness: if algo yields true for w , then w ∈ L(G).Completeness: if w ∈ L(G), then algo yields true for w .Complexity of an algorithm sometimes easier to determine.Fa
ilitates tabulation and an implementation as a
hart parser.
Natural Language Syntax with TAG 4/25

Dedu
tion systems (3)How
hara
terize a single parsing step?During parsing, the parser produ
es trees (parse trees, partialresults) and tries to
ombine them to new trees, until some treerooted by the goal
ategory (e.g. S)
omes out.We
an
hara
terize parse treesWe
an
hara
terize how new parse trees
an be dedu
ed fromexisting onesWe
an �x a goal: We want to dedu
e a tree with root S thatspans the entire input senten
e
Natural Language Syntax with TAG 5/25

Dedu
tion systems (4)We
hara
terize a parse tree rooted by some nonterminal X by theterminals X spans.S VPNP NPV Det NI saw a man
Natural Language Syntax with TAG 6/25

Dedu
tion systems (4)We
hara
terize a parse tree rooted by some nonterminal X by theterminals X spans.S VPNP NPV Det NI saw a manWe write parse trees/partial parse results in the form of items, e.g.,
[X , i , j], meaning that X derives the terminals between i and j .Here: [S , 0, 4]Natural Language Syntax with TAG 6/25

Dedu
tion systems (6)Parsing
an be viewed as a dedu
tive pro
essDedu
tion of new items from existing ones
an be des
ribedusing inferen
e rules.

Natural Language Syntax with TAG 7/25

Dedu
tion systems (6)Parsing
an be viewed as a dedu
tive pro
essDedu
tion of new items from existing ones
an be des
ribedusing inferen
e rules.General form ante
edent
onsequent side
onditions(ante
edent,
onsequent: lists of items)
Natural Language Syntax with TAG 7/25

Dedu
tion systems (6)Parsing
an be viewed as a dedu
tive pro
essDedu
tion of new items from existing ones
an be des
ribedusing inferen
e rules.General form ante
edent
onsequent side
onditions(ante
edent,
onsequent: lists of items)Appli
ation: if ante
edent
an be dedu
ed and side
ondition holds,then the
onsequent
an be dedu
ed as well.Natural Language Syntax with TAG 7/25

Dedu
tion systems (7)
A dedu
tion system
onsists of

Natural Language Syntax with TAG 8/25

Dedu
tion systems (7)
A dedu
tion system
onsists ofdedu
tion rules;

Natural Language Syntax with TAG 8/25

Dedu
tion systems (7)
A dedu
tion system
onsists ofdedu
tion rules;an axiom (or axioms),
an be written as a dedu
tion rule withempty ante
edent;

Natural Language Syntax with TAG 8/25

Dedu
tion systems (7)
A dedu
tion system
onsists ofdedu
tion rules;an axiom (or axioms),
an be written as a dedu
tion rule withempty ante
edent;and a goal item.

Natural Language Syntax with TAG 8/25

Dedu
tion systems (7)
A dedu
tion system
onsists ofdedu
tion rules;an axiom (or axioms),
an be written as a dedu
tion rule withempty ante
edent;and a goal item.The parsing algorithm su

eeds if, for a given input, it is possible todedu
e the goal item.

Natural Language Syntax with TAG 8/25

Dedu
tion systems (8)
Dedu
tion system for CYK (CFG-Parsing)Items have three elements:X ∈ N ∪ T : the nonterminal/terminal that spans a substringwi , . . . ,wj of w ;the index i of the �rst terminal in the subsequen
e;the length l = j − i of the subsequen
e.Item form: [X , i , l] with X ∈ N ∪ T , i ∈ [1..n + 1], l ∈ [0..n].

Natural Language Syntax with TAG 9/25

Dedu
tion systems (9)Goal item: [S , 1, n].Dedu
tion rules:S
an:
[a, i , 1] wi = a

ε-produ
tions:
[A, i , 0] A → ε ∈ P , i ∈ [1..n + 1]Complete: [A1, i1, l1], . . . , [Ak , ik , lk]

[A, i1, l] A → A1 . . .Ak ∈ P ,l = l1 + · · ·+ lk ,ij = i1 + l1 · · ·+ lj−1for 1 < j ≤ k
Natural Language Syntax with TAG 10/25

CYK: Items (1)CYK-Parsing for TAG:First presented in [Vijay-Shanker and Joshi, 1985℄, formulationwith dedu
tion rules in [Kallmeyer and Satta, 2009℄.Assumption: elementary trees are su
h that ea
h node has atmost two daughters. (Any TAG
an be transformed into anequivalent TAG satisfying this
ondition.)The algorithm simulates a bottom-up traversal of the derivedtree.
Natural Language Syntax with TAG 11/25

CYK: Items (2)At ea
h moment, we are in a spe
i�
 node in an elementarytree and we know about the yield of the part below.Either there is a foot node below, then the yield is separatedinto two parts. Or there is no foot node below and the yield isa single substring of the input.We need to keep tra
k of whether we have already adjoined atthe node or not sin
e at most one adjun
tion per node
ano

ur.For this, we distinguish between a bottom and a top positionfor the dot on a node. Bottom signi�es that we have notperformed an adjun
tion.Natural Language Syntax with TAG 12/25

CYK: Items (2)At ea
h moment, we are in a spe
i�
 node in an elementarytree and we know about the yield of the part below.Either there is a foot node below, then the yield is separatedinto two parts. Or there is no foot node below and the yield isa single substring of the input.We need to keep tra
k of whether we have already adjoined atthe node or not sin
e at most one adjun
tion per node
ano

ur.For this, we distinguish between a bottom and a top positionfor the dot on a node. Bottom signi�es that we have notperformed an adjun
tion.Natural Language Syntax with TAG 12/25

CYK: Items (3)Item form: [γ, pt , i , f1, f2, j] where
γ ∈ I ∪ A,p is the Gorn address of a node in γ (ε for the root, pi for theith daughter of the node at address p),subs
ript t ∈ {⊤,⊥} spe
i�es whether substitution oradjun
tion has already taken pla
e (⊤) or not (⊥) at p, and0 ≤ i ≤ f1 ≤ f2 ≤ j ≤ n are indi
es with i , j indi
ating the leftand right boundaries of the yield of the subtree at position pand f1, f2 indi
ating the yield of a gap in
ase a foot node isdominated by p. We write f1 = f2 = � if no gap is involved.

Natural Language Syntax with TAG 13/25

CYK: Items (3)Item form: [γ, pt , i , f1, f2, j] where
γ ∈ I ∪ A,p is the Gorn address of a node in γ (ε for the root, pi for theith daughter of the node at address p),subs
ript t ∈ {⊤,⊥} spe
i�es whether substitution oradjun
tion has already taken pla
e (⊤) or not (⊥) at p, and0 ≤ i ≤ f1 ≤ f2 ≤ j ≤ n are indi
es with i , j indi
ating the leftand right boundaries of the yield of the subtree at position pand f1, f2 indi
ating the yield of a gap in
ase a foot node isdominated by p. We write f1 = f2 = � if no gap is involved.

Natural Language Syntax with TAG 13/25

CYK: Items (3)Item form: [γ, pt , i , f1, f2, j] where
γ ∈ I ∪ A,p is the Gorn address of a node in γ (ε for the root, pi for theith daughter of the node at address p),subs
ript t ∈ {⊤,⊥} spe
i�es whether substitution oradjun
tion has already taken pla
e (⊤) or not (⊥) at p, and0 ≤ i ≤ f1 ≤ f2 ≤ j ≤ n are indi
es with i , j indi
ating the leftand right boundaries of the yield of the subtree at position pand f1, f2 indi
ating the yield of a gap in
ase a foot node isdominated by p. We write f1 = f2 = � if no gap is involved.

Natural Language Syntax with TAG 13/25

CYK: Items (3)Item form: [γ, pt , i , f1, f2, j] where
γ ∈ I ∪ A,p is the Gorn address of a node in γ (ε for the root, pi for theith daughter of the node at address p),subs
ript t ∈ {⊤,⊥} spe
i�es whether substitution oradjun
tion has already taken pla
e (⊤) or not (⊥) at p, and0 ≤ i ≤ f1 ≤ f2 ≤ j ≤ n are indi
es with i , j indi
ating the leftand right boundaries of the yield of the subtree at position pand f1, f2 indi
ating the yield of a gap in
ase a foot node isdominated by p. We write f1 = f2 = � if no gap is involved.

Natural Language Syntax with TAG 13/25

CYK: Inferen
e rules (1)Goal items
[α, ε⊤, 0, �, �, n] where α ∈ IWe need two rules to pro
ess leaf nodes while s
anning their labels,depending on whether they have terminal labels or labels ε:Lex-s
an
[γ, p⊤, i , �, �, i + 1] l(γ, p) = wi+1Eps-s
an
[γ, p⊤, i , �, �, i] l(γ, p) = ε(Notation: l(γ,p) is the label of the node at address p in γ.)Natural Language Syntax with TAG 14/25

CYK: Inferen
e rules (2)
•wi+1i i + 1Lex-s
an •

εi iEps-s
an
Natural Language Syntax with TAG 15/25

CYK: Inferen
e rules (3)The rule foot-predi
t pro
esses the foot node of auxiliary trees
β ∈ A by guessing the yield below the foot node:Foot-predi
t
[β, p⊤, i , i , j , j] β ∈ A, p foot node address in β, i ≤ jA

•A∗i j
Natural Language Syntax with TAG 16/25

CYK: Inferen
e rules (4)When moving up inside a single elementary tree, we either movefrom only one daughter to its mother, if this is the only daughter,or we move from the set of both daughters to the mother node:Move-unary
[γ, (p · 1)⊤, i , f1, f2, j]

[γ, p⊥, i , f1, f2, j] node address p · 2 does not exist in γMove-binary
[γ, (p · 1)⊤, i , f1, f2, k], [γ, (p · 2)⊤, k , f ′1 , f ′2 , j]

[γ, p⊥, i , f1 ⊕ f ′1 , f2 ⊕ f ′2 , j](f ′
⊕ f ′′ = f where f = f ′ if f ′′ = �, f = f ′′ if f ′ = �, and f is unde�nedotherwise)Natural Language Syntax with TAG 17/25

CYK: Inferen
e rules (5)Move-unary:
γ A

•Bi j

γ
A
•Bi j

Natural Language Syntax with TAG 18/25

CYK: Inferen
e rules (6)Move-binary:
γ A

•B Ci k γ AB •Ck j

γ
A
•B Ci jNatural Language Syntax with TAG 19/25

CYK: Inferen
e rules (7)For nodes that do not require adjun
tion, we
an move from thebottom position of the node to its top position.Null-adjoin
[γ, p⊥, i , f1, f2, j]
[γ, p⊤, i , f1, f2, j] fOA(γ, p) = 0
γ

A
•i j γ

•Ai jNatural Language Syntax with TAG 20/25

CYK: Inferen
e rules (8)The rule substitute performes a substitution:Substitute
[α, ε⊤, i , �, �, j]
[γ, p⊤, i , �, �, j] l(α, ε) = l(γ, p)

•A
αi j

γ

•Ai j
Natural Language Syntax with TAG 21/25

CYK: Inferen
e rules (9)
The rule adjoin adjoins an auxiliary tree β at p in γ, under thepre
ondition that the adjun
tion of β at p in γ is allowed:Adjoin
[β, ε⊤, i , f1, f2, j], [γ, p⊥, f1, f ′1 , f ′2 , f2]

[γ, p⊤, i , f ′1 , f ′2 , j] β ∈ fSA(γ, p)
Natural Language Syntax with TAG 22/25

CYK: Inferen
e rules (10)Adjoin:
•A

β A∗i f1 f2 j γ
A
•f1 f2

 γ
•Ai jNatural Language Syntax with TAG 23/25

CYK: ComplexityComplexity of the algorithm: What is the upper bound for thenumber of appli
ations of the adjoin operation?We have |A| possibilities for β, |A ∪ I | for γ, m for p where mis the maximal number of internal nodes in an elementary tree.The six indi
es i , f1, f ′1 , f ′2 , f2, j range from 0 to n.Consequently, adjoin
an be applied at most |A||A ∪ I |m(n + 1)6times and therefore, the time
omplexity of this algorithm is O(n6).
Natural Language Syntax with TAG 24/25

CYK: ComplexityComplexity of the algorithm: What is the upper bound for thenumber of appli
ations of the adjoin operation?We have |A| possibilities for β, |A ∪ I | for γ, m for p where mis the maximal number of internal nodes in an elementary tree.The six indi
es i , f1, f ′1 , f ′2 , f2, j range from 0 to n.Consequently, adjoin
an be applied at most |A||A ∪ I |m(n + 1)6times and therefore, the time
omplexity of this algorithm is O(n6).
Natural Language Syntax with TAG 24/25

Joshi, A. K. and S
habes, Y. (1997).Tree-Adjoning Grammars.In Rozenberg, G. and Salomaa, A., editors, Handbook of Formal Languages, pages 69�123.Springer, Berlin.Kallmeyer, L. and Satta, G. (2009).A Polynomial-Time Parsing Algorithm for TT-MCTAG.In Pro
eedings of ACL, Singapore.Nederhof, M.-J. (1997).Solving the
orre
t-pre�x property for TAGs.In Be
ker, T. and Krieger, H.-U., editors, Pro
eedings of the Fifth Meeting on Mathemati
s ofLanguage, pages 124�130, S
hloss Dagstuhl, Saarbrü
ken.S
habes, Y. and Joshi, A. K. (1988).An Earley-type parsing algorithm for Tree Adjoining Grammars.In Pro
eedings of the 26th Annual Meeting of the Asso
iation for Computational Linguisti
s ,pages 258�269.Shieber, S. M., S
habes, Y., and Pereira, F. C. N. (1995).Prin
iples and implementation of dedu
tive parsing.Journal of Logi
 Programming, 24(1&2):3�36.Sikkel, K. (1997).Parsing S
hemata.Springer, Berlin, Heidelberg, New York.Vijay-Shanker, K. and Joshi, A. K. (1985).Some
omputational properties of Tree Adjoining Grammars.In Pro
eedings of the 23rd Annual Meeting of the Asso
iation for Computational Linguisti
s ,pages 82�93.

	Parsing as deduction
	A CYK recognizer for TAG
	Items
	Inference rules
	Complexity

