Introduction to Tree Adjoining Grammar
Natural Language Syntax with TAG

Wolfgang Maier and Timm Lichte
University of Diisseldorf

DGfS-CL Fall School 2011

1st week, 4th session

Sep 1, 2011
HEINRICH HEINE o
UNIVERSITAT DOSSELDORF SFB 991

Natural Language Syntax with TAG 1/25

Outline

@ Parsing as deduction

© A CYK recognizer for TAG
@ ltems
@ Inference rules
@ Complexity

Natural Language Syntax with TAG

2/25

Deduction systems (1)

@ Algorithmic descriptions of parsing algorithms (e.g., in
pseudo-code) introduce data structures and control structures.

@ The parsing strategy of the algorithm does not depend on
them.

Question: Can we separate the parsing strategy from the control

strategy?
Answer: Deduction systems [Shieber et al., 1995, Sikkel, 1997]

Natural Language Syntax with TAG 3/25

Deduction systems (2)

Advantages:

@ Concentration on parsing strategy;

o Facilitation of proofs (e.g., soundness and completeness of an
algorithm).
Soundness: if algo yields true for w, then w € L(G).
Completeness: if w € L(G), then algo yields true for w.

@ Complexity of an algorithm sometimes easier to determine.

@ Facilitates tabulation and an implementation as a chart parser.

Natural Language Syntax with TAG 4/25

Deduction systems (3)

How characterize a single parsing step?

During parsing, the parser produces trees (parse trees, partial
results) and tries to combine them to new trees, until some tree
rooted by the goal category (e.g. S) comes out.

@ We can characterize parse trees

@ We can characterize how new parse trees can be deduced from
existing ones

@ We can fix a goal: We want to deduce a tree with root S that
spans the entire input sentence

Natural Language Syntax with TAG 5/25

Deduction systems (4)

We characterize a parse tree rooted by some nonterminal X by the
terminals X spans.

S

\
/V
NP/P
‘ \

T

[saw a man

P

\
N

/

et

Natural Language Syntax with TAG 6/25

Deduction systems (4)

We characterize a parse tree rooted by some nonterminal X by the
terminals X spans.

S

\
/V
NP/P
‘ \

T

[saw a man

P

\
N

/

et

4

We write parse trees/partial parse results in the form of items, e.g.,
[X,1i,j], meaning that X derives the terminals between / and j.

Here: [S,0,4]]

Natural Language Syntax with TAG 6/25

Deduction systems (6)

@ Parsing can be viewed as a deductive process

@ Deduction of new items from existing ones can be described
using inference rules.

Natural Language Syntax with TAG 7/25

Deduction systems (6)

@ Parsing can be viewed as a deductive process

@ Deduction of new items from existing ones can be described
using inference rules.

General form

antecedent . ..
— side conditions
consequent

(antecedent, consequent: lists of items)

Natural Language Syntax with TAG 7/25

Deduction systems (6)

@ Parsing can be viewed as a deductive process

@ Deduction of new items from existing ones can be described
using inference rules.

General form

antecedent
consequent

side conditions

(antecedent, consequent: lists of items)

Application: if antecedent can be deduced and side condition holds,
then the consequent can be deduced as well.

Natural Language Syntax with TAG 7/25

Deduction systems (7)

A deduction system consists of

Natural Language Syntax with TAG 8/25

Deduction systems (7)

A deduction system consists of

o deduction rules;

Natural Language Syntax with TAG 8/25

Deduction systems (7)

A deduction system consists of

o deduction rules;

@ an axiom (or axioms), can be written as a deduction rule with
empty antecedent;

Natural Language Syntax with TAG 8/25

Deduction systems (7)

A deduction system consists of

o deduction rules;

@ an axiom (or axioms), can be written as a deduction rule with
empty antecedent;

@ and a goal item.

Natural Language Syntax with TAG 8/25

Deduction systems (7)

A deduction system consists of

o deduction rules;

@ an axiom (or axioms), can be written as a deduction rule with
empty antecedent;

@ and a goal item.

The parsing algorithm succeeds if, for a given input, it is possible to
deduce the goal item.

Natural Language Syntax with TAG 8/25

Deduction systems (8)

Deduction system for CYK (CFG-Parsing)
Items have three elements:
@ X € NU T: the nonterminal/terminal that spans a substring
Wi, ..., w; of w;
@ the index i of the first terminal in the subsequence;

@ the length / = j — i of the subsequence.
Item form: [X,i,/] with X e NU T, i€ [l.n+1], | €[0..n].

Natural Language Syntax with TAG 9/25

Deduction systems (9)

Goal item: [S, 1, n].
Deduction rules:

Scan: W w; = a

e-productions: A—eecPiel.n+1]

[A,1,0]
A A AcEP,
[Alvil)ll]a"'7[Ak)ik7/k] /:/1++lk7

[A, i1, 1] j=h+h -+l
forl <j<k

Complete:

Natural Language Syntax with TAG 10/25

CYK: Items (1)

CYK-Parsing for TAG:
@ First presented in [Vijay-Shanker and Joshi, 1985], formulation
with deduction rules in [Kallmeyer and Satta, 2009].

@ Assumption: elementary trees are such that each node has at
most two daughters. (Any TAG can be transformed into an
equivalent TAG satisfying this condition.)

@ The algorithm simulates a bottom-up traversal of the derived
tree.

Natural Language Syntax with TAG 11/25

CYK: Items (2)

@ At each moment, we are in a specific node in an elementary
tree and we know about the yield of the part below.

o Either there is a foot node below, then the yield is separated
into two parts. Or there is no foot node below and the yield is
a single substring of the input.

Natural Language Syntax with TAG 12/25

CYK: Items (2)

@ At each moment, we are in a specific node in an elementary
tree and we know about the yield of the part below.

o Either there is a foot node below, then the yield is separated
into two parts. Or there is no foot node below and the yield is
a single substring of the input.

@ We need to keep track of whether we have already adjoined at
the node or not since at most one adjunction per node can
occur.

@ For this, we distinguish between a bottom and a top position
for the dot on a node. Bottom signifies that we have not
performed an adjunction.

Natural Language Syntax with TAG 12/25

Item form: [v, p¢, I, 1, f2,j] where

o yelUA,

@ p is the Gorn address of a node in v (¢ for the root, pi for the
ith daughter of the node at address p),

@ subscript t € {T, L} specifies whether substitution or
adjunction has already taken place (T) or not (L) at p, and

0 0<i<fi<fh<j< nareindices with i, indicating the left
and right boundaries of the yield of the subtree at position p
and fi, f, indicating the yield of a gap in case a foot node is
dominated by p. We write f{ = f, = — if no gap is involved.

CYK: Items (3)

Item form: [v, p¢, I, 1, f2,j] where

e yelUA,

@ p is the Gorn address of a node in v (¢ for the root, pi for the
ith daughter of the node at address p),

Natural Language Syntax with TAG 13/25

CYK: Items (3)

Item form: [v, p¢, I, 1, f2,j] where

e yelUA,

@ p is the Gorn address of a node in v (¢ for the root, pi for the
ith daughter of the node at address p),

@ subscript t € {T, L} specifies whether substitution or
adjunction has already taken place (T) or not (L) at p, and

Natural Language Syntax with TAG 13/25

CYK: Items (3)

Item form: [v, p¢, I, 1, f2,j] where

e yelUA,
@ p is the Gorn address of a node in v (¢ for the root, pi for the
ith daughter of the node at address p),

@ subscript t € {T, L} specifies whether substitution or
adjunction has already taken place (T) or not (L) at p, and

0 0</i<fi <fh<j< nareindices with /,; indicating the left
and right boundaries of the yield of the subtree at position p
and fi, f, indicating the yield of a gap in case a foot node is
dominated by p. We write f = f, = — if no gap is involved.

Natural Language Syntax with TAG 13/25

CYK: Inference rules (1)

[, e1,0,—,—, n] where o € /

We need two rules to process leaf nodes while scanning their labels,
depending on whether they have terminal labels or labels &:

Lex-scan

(v, p) = wit1

[77PT7i7_7_7i+1]

v
Eps-scan

I(v,p) =¢

[77 pPT, i7_7_7 I]

N

(Notation: I(v, p) is the label of the node at address p in ~.)

Natural Language Syntax with TAG 14/25

CYK: Inference rules (2)

L] L]

Wil -E_

i i+1 i i
Lex-scan Eps-scan

Natural Language Syntax with TAG 15/25

CYK: Inference rules (3)

The rule foot-predict processes the foot node of auxiliary trees
B € A by guessing the yield below the foot node:

Foot-predict

— € A, p foot node address in 3,/ <
Bopr il P EAP Pris]

Natural Language Syntax with TAG 16/25

CYK: Inference rules (4)

When moving up inside a single elementary tree, we either move
from only one daughter to its mother, if this is the only daughter,
or we move from the set of both daughters to the mother node:

Move-unary

[77 (P i 1)T? iv fl’ f27]]
[v,pL,i, i, 2,]]

node address p - 2 does not exist in

| A\

Move-binary

[77 (p : 1)T7 ia f17 f.27 k]7 [77 (P : 2)T7 k7 fj.llu 2/7.I]
[7’pJ_7i’f1 S fllvf2 D f2,71]

(Fof'"=Ffwheref =f"iff"=— f=F"iff =-, and f is undefined

otherwise)

Natural Language Syntax with TAG 17/25

CYK: Inference rules (5)

Move-unary:

Natural Language Syntax with TAG 18/25

CYK: Inference rules (6)

A

Natural Language Syntax with TAG 19/25

CYK: Inference rules (7)

For nodes that do not require adjunction, we can move from the
bottom position of the node to its top position.

Null-adjoin

[77 P, i’ fla f27]]
[77 PT, i’ fla f27]]

foa(v,p) =0

/N

Natural Language Syntax with TAG 20/25

CYK: Inference rules (8)

The rule substitute performes a substitution:

et i) g2y = ()

[7’pT’ iv_’ _’j]

A

Natural Language Syntax with TAG 21/25

CYK: Inference rules (9)

The rule adjoin adjoins an auxiliary tree 5 at p in 7, under the
precondition that the adjunction of 3 at p in ~ is allowed:

[/87€T7 i’ flv f27j]’ [’Y’pJ_’ fl’ fllv f2,7 f2]

Doprs i] B € fsalr:p)

Natural Language Syntax with TAG 22/25

CYK: Inference rules (10)

Adjoin:

A
’y []
i L f i
f fa

Natural Language Syntax with TAG 23/25

CYK: Complexity

Complexity of the algorithm: What is the upper bound for the
number of applications of the adjoin operation?

@ We have |A| possibilities for 3, |AU I| for v, m for p where m
is the maximal number of internal nodes in an elementary tree.

@ The six indices i, fi,], f], f,j range from 0 to n.

Natural Language Syntax with TAG 24/25

CYK: Complexity

Complexity of the algorithm: What is the upper bound for the
number of applications of the adjoin operation?

@ We have |A| possibilities for 3, |AU I| for v, m for p where m
is the maximal number of internal nodes in an elementary tree.

@ The six indices i, fi,], f], f,j range from 0 to n.

Consequently, adjoin can be applied at most |A||A U I|m(n + 1)°
times and therefore, the time complexity of this algorithm is O(n®).

Natural Language Syntax with TAG 24/25

ﬁ Joshi, A. K. and Schabes, Y. (1997).
Tree-Adjoning Grammars.
In Rozenberg, G. and Salomaa, A., editors, Handbook of Formal Languages, pages 69-123.
Springer, Berlin.

@ Kallmeyer, L. and Satta, G. (2009).
A Polynomial-Time Parsing Algorithm for TT-MCTAG.
In Proceedings of ACL, Singapore.

ﬁ Nederhof, M.-J. (1997).

Solving the correct-prefix property for TAGs.
In Becker, T. and Krieger, H.-U_, editors, Proceedings of the Fifth Meeting on Mathematics of
Language, pages 124-130, Schloss Dagstuhl, Saarbriicken.

ﬁ Schabes, Y. and Joshi, A. K. (1988).
An Earley-type parsing algorithm for Tree Adjoining Grammars.

In Proceedings of the 26th Annual Meeting of the Association for Computational Linguistics ,
pages 258-269.

@ Shieber, S. M., Schabes, Y., and Pereira, F. C. N. (1995).

Principles and implementation of deductive parsing.
Journal of Logic Programming, 24(1&2):3-36.

@ Sikkel, K. (1997).

Parsing Schemata.

Springer, Berlin, Heidelberg, New York.
ﬁ Vijay-Shanker, K. and Joshi, A. K. (1985).

Some computational properties of Tree Adjoining Grammars.
In Proceedings of the 23rd Annual Meeting of the Association for Computational Linguistics,
pages 82-93.

	Parsing as deduction
	A CYK recognizer for TAG
	Items
	Inference rules
	Complexity

