
Introdution to Tree Adjoining GrammarNatural Language Syntax with TAGWolfgang Maier and Timm LihteUniversity of DüsseldorfDGfS-CL Fall Shool 20111st week, 4th sessionSep 1, 2011
Natural Language Syntax with TAG 1/25

Outline
1 Parsing as dedution2 A CYK reognizer for TAGItemsInferene rulesComplexity

Natural Language Syntax with TAG 2/25

Dedution systems (1)
Algorithmi desriptions of parsing algorithms (e.g., inpseudo-ode) introdue data strutures and ontrol strutures.The parsing strategy of the algorithm does not depend onthem.Question: Can we separate the parsing strategy from the ontrolstrategy?Answer: Dedution systems [Shieber et al., 1995, Sikkel, 1997℄

Natural Language Syntax with TAG 3/25

Dedution systems (2)Advantages:Conentration on parsing strategy;Failitation of proofs (e.g., soundness and ompleteness of analgorithm).Soundness: if algo yields true for w , then w ∈ L(G).Completeness: if w ∈ L(G), then algo yields true for w .Complexity of an algorithm sometimes easier to determine.Failitates tabulation and an implementation as a hart parser.
Natural Language Syntax with TAG 4/25

Dedution systems (3)How haraterize a single parsing step?During parsing, the parser produes trees (parse trees, partialresults) and tries to ombine them to new trees, until some treerooted by the goal ategory (e.g. S) omes out.We an haraterize parse treesWe an haraterize how new parse trees an be dedued fromexisting onesWe an �x a goal: We want to dedue a tree with root S thatspans the entire input sentene
Natural Language Syntax with TAG 5/25

Dedution systems (4)We haraterize a parse tree rooted by some nonterminal X by theterminals X spans.S VPNP NPV Det NI saw a man
Natural Language Syntax with TAG 6/25

Dedution systems (4)We haraterize a parse tree rooted by some nonterminal X by theterminals X spans.S VPNP NPV Det NI saw a manWe write parse trees/partial parse results in the form of items, e.g.,
[X , i , j], meaning that X derives the terminals between i and j .Here: [S , 0, 4]Natural Language Syntax with TAG 6/25

Dedution systems (6)Parsing an be viewed as a dedutive proessDedution of new items from existing ones an be desribedusing inferene rules.

Natural Language Syntax with TAG 7/25

Dedution systems (6)Parsing an be viewed as a dedutive proessDedution of new items from existing ones an be desribedusing inferene rules.General form anteedentonsequent side onditions(anteedent, onsequent: lists of items)
Natural Language Syntax with TAG 7/25

Dedution systems (6)Parsing an be viewed as a dedutive proessDedution of new items from existing ones an be desribedusing inferene rules.General form anteedentonsequent side onditions(anteedent, onsequent: lists of items)Appliation: if anteedent an be dedued and side ondition holds,then the onsequent an be dedued as well.Natural Language Syntax with TAG 7/25

Dedution systems (7)
A dedution system onsists of

Natural Language Syntax with TAG 8/25

Dedution systems (7)
A dedution system onsists ofdedution rules;

Natural Language Syntax with TAG 8/25

Dedution systems (7)
A dedution system onsists ofdedution rules;an axiom (or axioms), an be written as a dedution rule withempty anteedent;

Natural Language Syntax with TAG 8/25

Dedution systems (7)
A dedution system onsists ofdedution rules;an axiom (or axioms), an be written as a dedution rule withempty anteedent;and a goal item.

Natural Language Syntax with TAG 8/25

Dedution systems (7)
A dedution system onsists ofdedution rules;an axiom (or axioms), an be written as a dedution rule withempty anteedent;and a goal item.The parsing algorithm sueeds if, for a given input, it is possible todedue the goal item.

Natural Language Syntax with TAG 8/25

Dedution systems (8)
Dedution system for CYK (CFG-Parsing)Items have three elements:X ∈ N ∪ T : the nonterminal/terminal that spans a substringwi , . . . ,wj of w ;the index i of the �rst terminal in the subsequene;the length l = j − i of the subsequene.Item form: [X , i , l] with X ∈ N ∪ T , i ∈ [1..n + 1], l ∈ [0..n].

Natural Language Syntax with TAG 9/25

Dedution systems (9)Goal item: [S , 1, n].Dedution rules:San:
[a, i , 1] wi = a

ε-produtions:
[A, i , 0] A → ε ∈ P , i ∈ [1..n + 1]Complete: [A1, i1, l1], . . . , [Ak , ik , lk]

[A, i1, l] A → A1 . . .Ak ∈ P ,l = l1 + · · ·+ lk ,ij = i1 + l1 · · ·+ lj−1for 1 < j ≤ k
Natural Language Syntax with TAG 10/25

CYK: Items (1)CYK-Parsing for TAG:First presented in [Vijay-Shanker and Joshi, 1985℄, formulationwith dedution rules in [Kallmeyer and Satta, 2009℄.Assumption: elementary trees are suh that eah node has atmost two daughters. (Any TAG an be transformed into anequivalent TAG satisfying this ondition.)The algorithm simulates a bottom-up traversal of the derivedtree.
Natural Language Syntax with TAG 11/25

CYK: Items (2)At eah moment, we are in a spei� node in an elementarytree and we know about the yield of the part below.Either there is a foot node below, then the yield is separatedinto two parts. Or there is no foot node below and the yield isa single substring of the input.We need to keep trak of whether we have already adjoined atthe node or not sine at most one adjuntion per node anour.For this, we distinguish between a bottom and a top positionfor the dot on a node. Bottom signi�es that we have notperformed an adjuntion.Natural Language Syntax with TAG 12/25

CYK: Items (2)At eah moment, we are in a spei� node in an elementarytree and we know about the yield of the part below.Either there is a foot node below, then the yield is separatedinto two parts. Or there is no foot node below and the yield isa single substring of the input.We need to keep trak of whether we have already adjoined atthe node or not sine at most one adjuntion per node anour.For this, we distinguish between a bottom and a top positionfor the dot on a node. Bottom signi�es that we have notperformed an adjuntion.Natural Language Syntax with TAG 12/25

CYK: Items (3)Item form: [γ, pt , i , f1, f2, j] where
γ ∈ I ∪ A,p is the Gorn address of a node in γ (ε for the root, pi for theith daughter of the node at address p),subsript t ∈ {⊤,⊥} spei�es whether substitution oradjuntion has already taken plae (⊤) or not (⊥) at p, and0 ≤ i ≤ f1 ≤ f2 ≤ j ≤ n are indies with i , j indiating the leftand right boundaries of the yield of the subtree at position pand f1, f2 indiating the yield of a gap in ase a foot node isdominated by p. We write f1 = f2 = � if no gap is involved.

Natural Language Syntax with TAG 13/25

CYK: Items (3)Item form: [γ, pt , i , f1, f2, j] where
γ ∈ I ∪ A,p is the Gorn address of a node in γ (ε for the root, pi for theith daughter of the node at address p),subsript t ∈ {⊤,⊥} spei�es whether substitution oradjuntion has already taken plae (⊤) or not (⊥) at p, and0 ≤ i ≤ f1 ≤ f2 ≤ j ≤ n are indies with i , j indiating the leftand right boundaries of the yield of the subtree at position pand f1, f2 indiating the yield of a gap in ase a foot node isdominated by p. We write f1 = f2 = � if no gap is involved.

Natural Language Syntax with TAG 13/25

CYK: Items (3)Item form: [γ, pt , i , f1, f2, j] where
γ ∈ I ∪ A,p is the Gorn address of a node in γ (ε for the root, pi for theith daughter of the node at address p),subsript t ∈ {⊤,⊥} spei�es whether substitution oradjuntion has already taken plae (⊤) or not (⊥) at p, and0 ≤ i ≤ f1 ≤ f2 ≤ j ≤ n are indies with i , j indiating the leftand right boundaries of the yield of the subtree at position pand f1, f2 indiating the yield of a gap in ase a foot node isdominated by p. We write f1 = f2 = � if no gap is involved.

Natural Language Syntax with TAG 13/25

CYK: Items (3)Item form: [γ, pt , i , f1, f2, j] where
γ ∈ I ∪ A,p is the Gorn address of a node in γ (ε for the root, pi for theith daughter of the node at address p),subsript t ∈ {⊤,⊥} spei�es whether substitution oradjuntion has already taken plae (⊤) or not (⊥) at p, and0 ≤ i ≤ f1 ≤ f2 ≤ j ≤ n are indies with i , j indiating the leftand right boundaries of the yield of the subtree at position pand f1, f2 indiating the yield of a gap in ase a foot node isdominated by p. We write f1 = f2 = � if no gap is involved.

Natural Language Syntax with TAG 13/25

CYK: Inferene rules (1)Goal items
[α, ε⊤, 0, �, �, n] where α ∈ IWe need two rules to proess leaf nodes while sanning their labels,depending on whether they have terminal labels or labels ε:Lex-san
[γ, p⊤, i , �, �, i + 1] l(γ, p) = wi+1Eps-san
[γ, p⊤, i , �, �, i] l(γ, p) = ε(Notation: l(γ,p) is the label of the node at address p in γ.)Natural Language Syntax with TAG 14/25

CYK: Inferene rules (2)
•wi+1i i + 1Lex-san •

εi iEps-san
Natural Language Syntax with TAG 15/25

CYK: Inferene rules (3)The rule foot-predit proesses the foot node of auxiliary trees
β ∈ A by guessing the yield below the foot node:Foot-predit
[β, p⊤, i , i , j , j] β ∈ A, p foot node address in β, i ≤ jA

•A∗i j
Natural Language Syntax with TAG 16/25

CYK: Inferene rules (4)When moving up inside a single elementary tree, we either movefrom only one daughter to its mother, if this is the only daughter,or we move from the set of both daughters to the mother node:Move-unary
[γ, (p · 1)⊤, i , f1, f2, j]

[γ, p⊥, i , f1, f2, j] node address p · 2 does not exist in γMove-binary
[γ, (p · 1)⊤, i , f1, f2, k], [γ, (p · 2)⊤, k , f ′1 , f ′2 , j]

[γ, p⊥, i , f1 ⊕ f ′1 , f2 ⊕ f ′2 , j](f ′
⊕ f ′′ = f where f = f ′ if f ′′ = �, f = f ′′ if f ′ = �, and f is unde�nedotherwise)Natural Language Syntax with TAG 17/25

CYK: Inferene rules (5)Move-unary:
γ A

•Bi j

γ
A
•Bi j

Natural Language Syntax with TAG 18/25

CYK: Inferene rules (6)Move-binary:
γ A

•B Ci k γ AB •Ck j

γ
A
•B Ci jNatural Language Syntax with TAG 19/25

CYK: Inferene rules (7)For nodes that do not require adjuntion, we an move from thebottom position of the node to its top position.Null-adjoin
[γ, p⊥, i , f1, f2, j]
[γ, p⊤, i , f1, f2, j] fOA(γ, p) = 0
γ

A
•i j γ

•Ai jNatural Language Syntax with TAG 20/25

CYK: Inferene rules (8)The rule substitute performes a substitution:Substitute
[α, ε⊤, i , �, �, j]
[γ, p⊤, i , �, �, j] l(α, ε) = l(γ, p)

•A
αi j

γ

•Ai j
Natural Language Syntax with TAG 21/25

CYK: Inferene rules (9)
The rule adjoin adjoins an auxiliary tree β at p in γ, under thepreondition that the adjuntion of β at p in γ is allowed:Adjoin
[β, ε⊤, i , f1, f2, j], [γ, p⊥, f1, f ′1 , f ′2 , f2]

[γ, p⊤, i , f ′1 , f ′2 , j] β ∈ fSA(γ, p)
Natural Language Syntax with TAG 22/25

CYK: Inferene rules (10)Adjoin:
•A

β A∗i f1 f2 j γ
A
•f1 f2

 γ
•Ai jNatural Language Syntax with TAG 23/25

CYK: ComplexityComplexity of the algorithm: What is the upper bound for thenumber of appliations of the adjoin operation?We have |A| possibilities for β, |A ∪ I | for γ, m for p where mis the maximal number of internal nodes in an elementary tree.The six indies i , f1, f ′1 , f ′2 , f2, j range from 0 to n.Consequently, adjoin an be applied at most |A||A ∪ I |m(n + 1)6times and therefore, the time omplexity of this algorithm is O(n6).
Natural Language Syntax with TAG 24/25

CYK: ComplexityComplexity of the algorithm: What is the upper bound for thenumber of appliations of the adjoin operation?We have |A| possibilities for β, |A ∪ I | for γ, m for p where mis the maximal number of internal nodes in an elementary tree.The six indies i , f1, f ′1 , f ′2 , f2, j range from 0 to n.Consequently, adjoin an be applied at most |A||A ∪ I |m(n + 1)6times and therefore, the time omplexity of this algorithm is O(n6).
Natural Language Syntax with TAG 24/25

Joshi, A. K. and Shabes, Y. (1997).Tree-Adjoning Grammars.In Rozenberg, G. and Salomaa, A., editors, Handbook of Formal Languages, pages 69�123.Springer, Berlin.Kallmeyer, L. and Satta, G. (2009).A Polynomial-Time Parsing Algorithm for TT-MCTAG.In Proeedings of ACL, Singapore.Nederhof, M.-J. (1997).Solving the orret-pre�x property for TAGs.In Beker, T. and Krieger, H.-U., editors, Proeedings of the Fifth Meeting on Mathematis ofLanguage, pages 124�130, Shloss Dagstuhl, Saarbrüken.Shabes, Y. and Joshi, A. K. (1988).An Earley-type parsing algorithm for Tree Adjoining Grammars.In Proeedings of the 26th Annual Meeting of the Assoiation for Computational Linguistis ,pages 258�269.Shieber, S. M., Shabes, Y., and Pereira, F. C. N. (1995).Priniples and implementation of dedutive parsing.Journal of Logi Programming, 24(1&2):3�36.Sikkel, K. (1997).Parsing Shemata.Springer, Berlin, Heidelberg, New York.Vijay-Shanker, K. and Joshi, A. K. (1985).Some omputational properties of Tree Adjoining Grammars.In Proeedings of the 23rd Annual Meeting of the Assoiation for Computational Linguistis ,pages 82�93.

	Parsing as deduction
	A CYK recognizer for TAG
	Items
	Inference rules
	Complexity

