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polysemy (Lieber 2004, Rainer 2014)

Affixes are frequently semantically underspecified, and subject to
polysemy and meaning extensions of various sorts (Bauer,
Lieber & Plag 2013: 641)

Context does not always fully determine the reading of a given
derived word (Kawaletz and Plag, 2015; Plag, Andreou &
Kawaletz, to appear).

To which extent does context determine the reading of derived
words?
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o We explore the problem of disambiguating newly derived words
in context, using the Distributional Semantics methodology (Firth
1957).

o We use corpus-extracted data to interpret deverbal -ment
nominalizations:

e event-denoting (e.g. assessment)

e object-denoting (e.g. pavement).
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e events (e.g. assessment)

results (e.g. containment)

states (e.g. contentment)
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(see among others, Lieber in press)

o Object-denoting nominalization:
“| set down the scrap of doll’s dress, a bedragglement of loose
lace hem” (COCA FIC 1999)

o Event-denoting nominalization:
“In many places, emplacement of granite plutons is
synchronous to volcanic eruptions” (Google WEB 1995)
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Polysemy and context

o Ambiguous readings:

o “After 8 weeks of hydrolytic degradation, the nonwoven fabric was
broken. There is an obvious embrittlement and cracking on the
nonwoven fabric (Figure 6.5b).” (Google ACAD 2014)

e “There is a persuasive legitimacy in this hatred of a war when it is
evoked by a man who has suffered its most horrible
debauchments.” (Google FIC 1965)

6/27
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Dataset

o Low frequency -ment derivatives extracted from corpora such as
the Corpus of Contemporary American English, the Corpus of
GlobalWeb-Based English, and WebCorp.

e 56 types, 401 tokens

e 4 verb classes

13 change-of-state verbs (e.g. congeal)

10 force verbs (e.g. coerce)

19 psych verbs (e.g. annoy)

14 putting verbs (e.g. embed)
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e Can we use Distributional Semantics tools to successfully
disambiguate derived words in context?
o Tasks:

o Can we distinguish between event and object readings?
e How do we classify the ambiguous cases?
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Distributional Semantic Models

o Distributional Hypothesis (Firth, 1957; Harris, 1954)
difference in meaning < difference in distribution
¢ Distributional Semantic Models:
DSM meaning of w = list of words which co-occur with w

wear,

t-shirt

| law | wear fie
judge | 8 2
t-shirt 1 8
tie 3 6 Judge

law

Distance between word vectors < semantic similarity
empirical correlate of the amount of shared meaning
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o DSM vectors as usage-based lexical entries:
o Contain contextual features for target words:
e Typical actions/actors (birds — fly), coordination (cats — dogs),
script knowledge (cook — eat)
e Co-occurrence quantifies the salience of distributional features for
a specific target

o Well established properties:
e Successful in modeling semantic similarity:

e NLP, Lexical Semantics, Psycholinguistic modeling
e Recent developments: compositionality and multimodality

e Known weaknesses:

e Low frequency words: vectors are unreliable
e Polysemous words: senses are conflated in a unique vector

12/27
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Compositionality

e Problem: the -ment derivatives in our dataset have low

frequency and are potentially ambiguous!
o Solution: words in the context as an approximation of the

meaning of the -ment derivatives

— sentence vectors: average of the vectors of the context

words (Schitze, 1997)

Target: suit
suity: The suit was in the closet, with the

tie and the t-shirt
suity: The lawyer filed a suit to the judge

wear
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Classifier

Supervised classification:

e Given an observation and a set of categories, assign the
observation to one of the categories:
e Observations: -ment sentences — Categories: object vs. event

e How do we classify?

e We identify a set of training examples (pairs of observations and
categories), and build a generalization which we can use to classify new
observations (test data)

e The generalization is our classifier

e The classifier is applied to unseen data
— is the classification correct?

14/27
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Classifier

¢ Training data:

e Corelex (Buitelaar, 1998): 196 EVENT and ARTIFACT seed nouns
e No polysemy: lunch (EVENT+OBJECT) is not an EVENT seed
e Frequency > 100
e No -ment derivatives

¢ 100 sentences per seed (randomly sampled)

e We built vector representations for the seed sentences, and used

them as (hopefully) unambiguous cases to train the classifier

e Output: probabilities of category assignment: e.g, 80% event vs.
20% object

We experimented with different classifier settings. Today, we discuss results achieved
with a svm degree 3, medium regularization (R package e1071)
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Results: overview

A weak positive result — events are distinguishable from objects
Ambiguous cases pattern with events
e Explanation: within the ambiguous class, there seems to be a
preponderance of possible eventive readings
A difference between force (event) and putting (object)
Next steps:

@ What are the factors which influence the prediction?
— regression analysis
® How can we improve the classifier?
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Regression analysis is employed to test the effect of a number of
factors (predictors) on a variable of interest (dependent variable)

o Dependent variable: probability of event < classifier output

o Variables of interest:
e Semantic type of the -ment derivative +— dataset annotation
e Object (reference), event, ambiguous
e Semantic class of the base « dataset annotation
e Putting (reference), force, psych, change of state
e Covariates:
e Frequency of the -ment derivative in COCA (freq-coca)
¢ Average frequency of the context words in the sentence
(context-frequency)
e How many words did we use to calculate the sentence vector?
(coverage)
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Regression: results

Predictor Effect Significance
H: SEMANTIC TYPE (REF: OBJECT)

event + *

ambiguous

Q: BASE SEMANTIC CLASS (REF: PUTTING)
change of state

force + *
psych

COVARIATES
freg-coca +
context-frequency + i
coverage

+ = prediction pulled toward the event reading
R2=13.7%, no collinearities
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Need for more discriminative contexts

o More frequent words are notoriously less discriminative

e Our predictions show that lack of discriminative contexts leads to
an eventive reading

o To improve the performance of our classifier on objects:

e Use only lower frequency words in training and testing
e From whole sentence to smaller window
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Summary

-ment
derivative:

hypothesis result

event or
object?

e Can we use Distributional Semantics tools to successfully
disambiguate derived words in context?

e Can we distinguish between event and object readings?
Yes, but we could do better

e How do we classify the ambiguous cases?
As events, but it is not so clear why

23/27
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Where do we go from here?

DSM Hcompositionality]— classifier

e How can we improve the classifier?

e DSM: reliable
e Compositionality (how we compute sentence vectors): further work

e Use only lower frequency words in training and testing
e From whole sentence to smaller window

o Classifier: computationally reliable, but we may improve the
properties of the training data
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Thank you!



References

Buitelaar, P. (1998). CoreLex: Systematic Polysemy and Underspecification.
PhD Thesis, Computer Science Brandeis University.

Firth, J. (1957). A synopsis of linguistic theory 1930-1955. Studies in
Linguistic Analysis (special volume of the Philological Society), 1952-59,
1-32.

Harris, Z. (1954). Distributional structure. Word, 10(23), 146D162.
Kawaletz, L., & Plag, I. (2015). Predicting the semantics of English
nominalizations: A frame-based analysis of -ment suffixation. In L. Bauer, L.
Kortvélyessy, & P. Stekauer(Eds.), Semantics of complex words (Vol. 3, p.
289-319). Dordrecht: Springer.

Lieber, R. (in press). English nouns: The ecology of nominalization.
Cambridge: Cambridge

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of
word representations in vector space. CoRR.

Plag, I., Andreou, M., & Kawaletz, L., (2016). A frame-semantic approach to
polysemy in affixation. In The lexeme in descriptive and theoretical
morphology.

Schiitze, H. (1998). Automatic word sense discrimination. Computational
Linguistics 27(1), 97-1283.

26/27



Technical details: DSM

e BNC + UkWac: 3.6 bln tokens
¢ Inflected words, frequency > 14 (800k target words)

o Window size: symmetric window, 5 words; state-of-the-art
extraction algorithm (Mikolov et al., 2013)



