Coercion: container, portion and measure interpretations of pseudo-partitive NPs

Peter Sutton & Hana Filip Heinrich Heine University, Düsseldorf

The Count-Mass Distinction - A Linguistic Misunderstanding? Ruhr Universität Bochum March. 2018

hainvil hain HEINRICH HEIN

UNIVERSITÄT DÜSSELDORE

Download these slides from: sfb991.uni-duesseldorf.de/en/c09/slides/

Outline

Introduction and main question

Background

Hypotheses and Predictions

Analysis within a frame based semantics

Preliminaries The mass/count distinction Pseudo-partitive NPs with receptacle nouns Coercion: Why are measure readings (usually) blocked

Discussion and Conclusions

Data 1: Three interpretations of pseudo-partitive NPs

- Pseudo-partitive NPs, such as two glasses of wine, admit of a several interpretations (i.a. Doetjes, 1997; Rothstein, 2011; Landman, 2016; Khrizman et al., 2015; Partee and Borschev, 2012).
- (1) a. He turned to reach the two glasses of wine that stood on a bedside table. (BNC)
 - b. i (*sic.*) should set the record straight with Clayart that two glasses of red wine a day have beneficial health results. [UKWaC]
 - c. Two glasses of wine is equal to 3 standard drinks of any alcoholic beverage. [UKWaC]
- (1a) has a container reading: the verbs, reach and stand, select for objects with (relatively) stable boundaries at any given time, e.g., containers (like glasses), and not for stuff lacking them, e.g., wine;
- (1b) has a portion reading: the contents (wine) of exactly two glasses has the effect on health, not the containers;
- (1c) has a measure reading: singular agreement in the equative construction, the equivalence is between volume or alcoholic content of the totality of alcoholic beverage contained in the relevant containers.

Count/mass and interpretations of pseudo-partitive NPs

- Khrizman et al. (2015); Rothstein (2011, 2016, 2017); Landman (2016) argue that:
 - measure interpretation is mass, other interpretations are count

Table: Two glasses of beer (Khrizman et al., 2015; Landman, 2016)

Interpretation	Paraphrase	Countability
container	two glasses filled with beer	COUNT
contents	two portions of beer, each the contents of a glass	COUNT
free portion	two one-glassful sized portions of beer	COUNT
measure	beer to the amount of two glassfuls	MASS

- We accept this position. We won't review the arguments here.
- For contrast, see Partee and Borschev (2012). Their "concrete portion" (in place of "free portion") is analysed as a subclass of measure.

Collapsing portion and contents

We will collapse 'free portion' and 'contents' into one category: portion

Table: Two glasses of beer

Interpretation	Paraphrase	Countability
container	two glasses filled with beer	COUNT
portion	two portions of beer, each (could be) the contents of a glass	COUNT
measure	beer to the amount of two glassfuls	MASS

- Spoiler: free portion/contents distinction retrievable from portion
- FREE PORTION a disjoint partition of beer, each portion is the contents of a glass in some possible world;
- CONTENTS a portion evaluated at the actual world (a disjoint partition of beer, each portion is the contents of a glass in the actual world).

Data 2: Coercion

- CD + Mass N ('CD' is 'cardinal numerical', Penn Treebank tags), e.g., two wines:
- type mismatch between a CD (two) and a mass N (wines) prompts a mass-to-count shift of the N denotation:
 - We get two different coerced mass-to-count shifts:
 - (2) a. John carried two white wines to the table.
 - b. Phil drank two large red wines.
 - (2a) container interpretation: carried selects for objects with (relatively) stable shape, hence two wines evokes implicit containers
 - \Rightarrow TWO GLASSES CONTAINING WINE;
 - ▶ (2b) portion interpretation: drink selects for liquids, hence two wines
 ⇒ TWO PORTIONS OF WINE, EACH (EQUIVALENT TO) THE CONTENTS OF A GLASS.
- A coerced measure interpretation is hard to get:
 - (3) #There are about two wines left in the barrel.

For wine and beer combined with CD's, a subkind shift is far more common: e.g., *Two wines were* served with dinner: a Malbec and a Sauvignon.

Interim summary:

State of the art:

- Pseudo-partitive NPs, such as two glasses of wine, have at least 3 interpretations:
 - Container
 - Portion
 - Measure

Novel observation:

For pseudo-partitive NPs (two wines), coercively re-interpreted with an implicit classifier-like concept (two GLASSES OF wine), it is much harder (if at all possible) to get measure interpretations.

Main question:

Why is it so hard, if not often impossible, to get the measure interpretation for combinations of 'CD+MassN', such as two wines?

Outline

Introduction and main question

Background

Hypotheses and Predictions

Analysis within a frame based semantics

Preliminaries The mass/count distinction Pseudo-partitive NPs with receptacle nouns Coercion: Why are measure readings (usually) blocked

Discussion and Conclusions

Outline

Introduction and main question

Background

Hypotheses and Predictions

Analysis within a frame based semantics

Preliminaries The mass/count distinction Pseudo-partitive NPs with receptacle nouns Coercion: Why are measure readings (usually) blocked

Discussion and Conclusions

Counting versus measuring

Rothstein (2011, 2016, 2017) argues for a syntactic distinction between container readings and measure readings:

 Container/contents interpretations much like a CD + Count-N structure, but with a complex NP (glasses of wine).

 Measure reading formed from a measure (*three glasses*) and an argument (*wine*)

Similar structures in Partee and Borschev (2012).

Container interpretation:

A function on the receptacle concept

There are different implementations of this idea. One representative example:

Rothstein (2011): A function REL that applies to the interpretation of the head, e.g. glass, and shifts it to a container classifier:¹

$$\begin{split} \llbracket glasses \rrbracket = \lambda x.\exists X \subseteq {}^*GLASS : x = \sqcup X \\ \llbracket glasses \text{ of wine } \rrbracket = (\mathsf{REL}(\llbracket glasses \rrbracket))(\llbracket \text{wine} \rrbracket) \\ = \lambda x.\exists y.\exists X \subseteq {}^*\mathsf{GLASS} : x = \sqcup X \\ \land \mathsf{CONTAIN}(x,y) \land y \in {}^{\cup} \text{wine} \\ \llbracket \text{three glasses of wine} \rrbracket = \lambda x.\exists y.\exists X \subseteq {}^*\mathsf{GLASS} : x = \sqcup X \\ \land \mathsf{CONTAIN}(x,y) \land y \in {}^{\cup} \text{wine} \\ \land \mathsf{CONTAIN}(x,y) \land y \in {}^{\cup} \text{wine} \land \mathsf{CARD}(x) = 3 \end{split}$$

- Important points:
 - REL is applied to [[glass(es)]], i.e., to the basic concrete-receptacle meaning of glass(es).
 - Same function sometimes used to derive contents (portion) interpretation (Landman, 2016)

¹wine denotes a kind; ^Uwine denotes a predicate; **X* indicates the upward closure of the set *X* under *I*/Bigereological sum; $\sqcup X$ is the (sum) entity that is the supremum of the set *X*. Container, portion and measure

Measure interpretation:

A function on the receptacle concept

There are different implementations of this idea. One representative example:

Rothstein (2011): A function FUL-realised either by the explicit morpheme -ful or by a null morpheme:

$$\llbracket -\text{ful} \rrbracket = \llbracket \emptyset_{ful} \rrbracket = \mathsf{FUL} = \lambda P.\lambda n.\lambda x.\mathsf{MEAS}_{\mathsf{volume}} = \langle P, n \rangle$$
$$\llbracket \text{three glasses} \rrbracket = \lambda x.\mathsf{MEAS}_{\mathsf{volume}} = \langle \mathsf{GLASS}, 3 \rangle$$
$$\llbracket \text{three glasses of wine} \rrbracket = \lambda x.x \in {}^{\cup} \textbf{wine} \land \mathsf{MEAS}_{\mathsf{volume}} = \langle \mathsf{GLASS}, 3 \rangle$$

- Important points:
 - FUL is applied to [[glass(es)]], i.e., to the basic concrete-receptacle meaning of glass(es).
 - Derivational independence between container/portion and measure interpretations.
 - Same assumption in: Partee and Borschev (2012); Khrizman et al. (2015); Landman (2016).

Outline

Introduction and main question

Background

Hypotheses and Predictions

Analysis within a frame based semantics

Preliminaries The mass/count distinction Pseudo-partitive NPs with receptacle nouns Coercion: Why are measure readings (usually) blocked

Discussion and Conclusions

Assumptions regarding receptacle nouns

Senses of receptacle Ns (glass, jar etc.)

- clearly have a sortal use: This is a glass.
- also have a relational, cLASSIFIER-like use
- commonly taken to be polysemous between the sortal, container and portion senses
 - sortal or relational sense determined by context of use
 - Evidence: lexicographic practice for instance, a part of the OED's lexical entry for glass:
 - "4.a. A glass vessel or receptacle. Also, the contents of the vessel.
 - 5. A drinking-vessel made of glass; hence, the liquor contained, and (fig.) drink."

Assumptions regarding receptacle nouns (cont.)

- The measure interpretation is NOT a part of the lexical meaning of most receptacle Ns.
 - It is derived 'on the fly' via meaning shifts:
 - bottle: Lexically encodes the basic sortal (receptacle) and the relational (container/portion) meaning
 - In some cases, the measure interpretation has become lexicalized as a standard measure, along with the basic sortal meaning and the relational (container/portion) senses:
 - cup (US English): Lexically encodes the basic sortal and the relational (container/portion) meanings, and *also* has a lexicalized standard measure meaning (250 ml - 8 fl. oz).

Nb. There are also standard measures, such as pint (British English), which shifted

to and have become lexicalized as container/portion relational concepts.

We will take this common sense approach (see also Partee and Borschev (2012), i.a.) at face value reflected in our two hypotheses.

Hypothesis 1 for p-pNPs formed with receptacle Ns

- (H1) The container and portion interpretations are the default interpretations.
 - The container and portion interpretation of receptacle nouns can be represented as a dot type, when in a relational context:
 container • portion: glass, bottle, box, ...
 - Cf. book interpreted as phys info (standing for 'physical object' and 'informational object') (Pustejovsky, 1993, 1995).
 - The possibility of a dot type analysis for the relational interpretations of receptable nouns independently suggested by Partee and Borschev (2012), Duek and Brasoveanu (2015)
 - neither provides this kind of formal analysis

Hypothesis 2 for p-pNPs formed with receptacle Ns

(H2) The measure interpretation is derived from the portion interpretation.

- Derived ...
 - Recall: The common sense assumption:
 - the sortal (receptacle) and the relational (container/portion) interpretations are lexically encoded. For most receptacle nouns, the measure interpretation is not a part of their lexical meaning, but is derived.
- ... from the portion interpretation:
 - About the stuff (e.g., *wine*), not the container (e.g., *glass*).
 SO PROBABLY NOT (DIRECTLY) DERIVED from the sortal or container interpretation.
 - Proposed paraphrase: three glasses of wine (measure) ≈ wine that measures 3 with respect to a scale on which one glass-sized portion of wine measures 1.
- ▶ Some function g such that **measure** = g(**portion**)
 - Formal details to follow

Two predictions

- (H1) The container and portion interpretations are default;
- (H2) the measure interpretation is derived from the portion interpretation.

If (H1) and (H2) are correct, then we expect the following to hold:

- (i) The container and portion interpretations of full p-p NPs (e.g. *two* glasses of wine) easily allow co-predication on the same object;
- (ii) the measure interpretation of expressions like *two wines* are generally difficult to get. (Details to follow.)

Co-predication I: Container-Portion

Prediction (i) is borne out:

(i) The container and portion interpretations of p-p NPs (e.g.,*two glasses of wine*) easily allow co-predication on the same object;

Receptacle nouns, such as *glass, bottle, pot*, have simultaneously accessible *container* (C) and *portion* (P) interpretations:

- (4) The two glasses of wine with tall, thin stems are being (C-P) drunk by Rachel and Matt.
- (5) Loretta drank the two glasses of wine with tall, thin stems. (P-C)

Co-predication II: Portion-Measure

Further predictions about co-predication which follow from (H1) and (H2):

(H1) The container and portion interpretations are default interpretations;(H2) the measure interpretation is derived from the portion interpretation.

There is a function g such that measure = g(portion) (H2)
 Some speakers may be able to reconstruct portion from g(portion)
 But reconstructing portion from g(portion) is not as straightforward (H1) as selecting container or portion from container • portion interpretation

- This is what we see. The portion and measure interpretations may be available for co-predication for some speakers, while others find them less than fully felicitous:
- (6) (#) The two glasses of wine with a sour flavour were the (P-M) last two in the bottle from two days ago.
- (7) (#) The last two glasses of wine in the bottle were drunk (M-P) by Carl at lunch and Harry at dinner.

Co-predication III: Container-Measure

(H1) The container and portion interpretations are default interpretations;(H2) the measure interpretation is derived from the portion interpretation.

 \circ measure = g(portion)

(H2)

- **container** interpretation 'disappears' as part of the derivation for **measure**
- measure blocks access to a co-predication container
 - This is what we see in sentences, such as 8 and 9.
 - (8) # The two glasses of wine with tall, thin stems were (C-M) the last two left in the bottle.
 - (9) # The last two glasses of wine in the bottle have (M-C) thin stems.

Also noted by Partee and Borchev (2012):

 (10) ?? On uronil s podnosa dva s polovinoj stakana vina. He dropped from tray two-acc with half-INSTR glass-GEN wine-GEN 'He dropped two and a half glasses of wine from the tray.'

Summary: (H1), (H2) and (i)

(H1) The container and portion interpretations are default interpretations;(H2) the measure interpretation is derived from the portion interpretation.

(i) The container and portion interpretations of p-p NPs (e.g. *two glasses of wine*) easily allow co-predication on the same object.

Our account suggests the following partial order for felicity of combinations of meanings in co-predications:

Most Felicitous Least Felicitous C-P > M-P > C-M P-C > P-M > M-C

- The container and portion are default dot-type interpretations
 - Available for co-predication
- If measure = g(portion), some, but not all speakers, may be able to reconstruct portion from measure for co-predications
- If measure g(portion), measure blocks container

Main puzzle: unavailability of measure via coercion

(H1) The container and portion interpretations are default interpretations;(H2) the measure interpretation is derived from the portion interpretation.

(ii) measure interpretation of expressions like two wines is generally difficult to get.

container	a. John carried two white wines to the table.) a	(2)
portion	b. Phil drank two large red wines.	b	
measure	#There are about two wines left in the barrel.) #	(3)

Coercion: requires recovering some receptacle (concept) from the context in order to resolve the type clash between a numerical and a mass noun.

- If the contextually determined RECEPTACLE (CONCEPT) is interpreted as container • portion by default (H1), then the type clash in 2a and 2b easy to resolve.
- But: if measure is derived from portion (H2), there is no type clash (or other impetus) to trigger the application of the requisite function
- Moreover, this function would have to apply to the portion interpretation of an implicit receptacle.
- Coercion does not operate over semantic types of implicit linguistic material.

Outline

Introduction and main question

Background

Hypotheses and Predictions

Analysis within a frame based semantics

Preliminaries The mass/count distinction Pseudo-partitive NPs with receptacle nouns Coercion: Why are measure readings (usually) blocked

Discussion and Conclusions

Outline

Introduction and main question

Background

Hypotheses and Predictions

Analysis within a frame based semantics Preliminaries

The mass/count distinction Pseudo-partitive NPs with receptacle nouns Coercion: Why are measure readings (usually) blocked

Discussion and Conclusions

Why Frame Semantics

Sources of inspiration:

- Type theory with records (TTR)
- Other frame semantics (Fillmore, 1976; Barsalou, 1992; Löbner, 2014)
- Landman's Iceberg Semantics ((body, base))

Why a different formalism:

- Much simpler than TTR, but retains ability to represent dot types
- Like TTR, retains Montague-style compositional semantics (other frame semantics lose this)
- Ability to represent richer lexical structures than Landman's Iceberg Semantics.

Standard features:

- functional types formed from basic types e, t, w, n, d (n for numbers, d for dimensions (e.g. volume))
- typed variables and constants, λ -abstraction

Non-standard features:

Propositions are frames (sets of (recursive) labelled fields) Example:

$$\llbracket n \rrbracket = \lambda x. \begin{bmatrix} \text{cbase} &= & \lambda y. P(y) \\ \text{ext} &= & *P(x) \end{bmatrix}$$

- Set of *P*s or sums of *P*s individuated in terms of the property $\lambda y.P(y)$.
- ► Of type ⟨*ef*⟩ with *f* a basic type for *frame*
- Modification can be done on specific fields (parts of a frame)
 - Labels can be used to refer to properties or propositions in frames:

$$cbase(\llbracket n \rrbracket(x)) \leftrightarrow \lambda y. P(y)_{:\langle et \rangle}$$
$$ext(\llbracket n \rrbracket(x)) \leftrightarrow {}^*P(x)_{:t}$$

Outline

Introduction and main question

Background

Hypotheses and Predictions

Analysis within a frame based semantics

Preliminaries

The mass/count distinction

Pseudo-partitive NPs with receptacle nouns Coercion: Why are measure readings (usually) blocked

Discussion and Conclusions

Sutton & Filip's account of the mass/count distinction

Expression	Туре	Description
glass, wine,	(et)	Predicates. Stand-ins for e.g., bundle of perceptual, func-
		tional, and topological properties
0	$\langle et, et \rangle$	Object unit function: A function from predicates to predi-
		cate for entities that can count as 'one'
$\mathcal{S}_{i>0} \in \mathbb{S}$	$\langle et, et \rangle$	Individuation Schema: A function from predicates P to
		predicate with an extension that is a maximally disjoint
		wrt the extension of P
$\mathcal{S}_0 \in \mathbb{S}$	$\langle et, et \rangle$	The Null Individuation Schema: The identity function.
		More formally:
		${\mathcal S}_0({\mathcal P}) = igcup_{\mathcal{S}_{i>0}\in\mathbb{S}} {\mathcal S}_i({\mathcal P})$)

Inspirations and origins:

- O: Landman's (2011) generator sets, Krifka's (1995) OU function
- ► S_{i>0}: Landman's (2011) variants, Rothstein's (2010) default counting contexts
- ► S₀: Landman's (2011) contexts for object mass nouns
- The context sensitivity of individuation: (Chierchia, 2010; Rothstein, 2010)
- (More in our work with TTR) mereotopological properties in a theory of individuation (Grimm, 2012)

Expression	Туре	Description
glass, wine,	(et)	Predicates. Stand-ins for e.g., bundle of perceptual, functional, and topological properties
0	$\langle et, et \rangle$	Object unit function: A function from predicates to predicate for entities that can
		count as 'one'
$S_{i>0} \in S$	$\langle et, et \rangle$	Individuation Schema: A function from predicates P to predicate with an exten-
		sion that is a maximally disjoint wrt the extension of P
$S_0 \in S$	$\langle et, et \rangle$	The Null Individuation Schema: The identity function. More formally:
		$\mathcal{S}_0(\mathcal{P}) = igcup_{\mathcal{S}_{i>0}\in\mathbb{S}}\mathcal{S}_i(\mathcal{P})$)

Examples:

$$\llbracket g | asses \rrbracket^{S_i} = \llbracket g | asses \rrbracket(S_i) = \lambda s.\lambda x. \begin{bmatrix} cbase = \lambda y.s(O(g | ass))(y) \\ ext = *s(O(g | ass))(x) \end{bmatrix} (S_i)$$

Set of individual glasses/sums of individual glasses under schema S_i . Disjoint counting base. Cumulative extension.

$$\llbracket \text{wine} \rrbracket^{S_i} = \llbracket \text{wine} \rrbracket = \lambda x. \begin{bmatrix} \text{cbase} = \lambda y.S_0(\text{wine})(y) \\ \text{ext} = S_0(\text{wine})(x) \end{bmatrix}$$

Set of all possible partitions of wine. Overlapping and non-quantized counting base. Cumulative extension.

$$\llbracket \text{furniture} \rrbracket^{S_i} = \llbracket \text{furniture} \rrbracket = \lambda x. \begin{bmatrix} \text{cbase} &= \lambda y.S_0(O(\text{furniture}))(y) \\ \text{ext} &= {}^*S_0(O(\text{furniture}))(x) \end{bmatrix}$$

Set of pieces of furniture and sums thereof. Overlapping and non-quantized counting base. Cumulative extension.

A set of sums of individual glasses that have cardinality 3 wrt the property $\lambda y.S_i(O(glass))(y)$

Outline

Introduction and main question

Background

Hypotheses and Predictions

Analysis within a frame based semantics

Preliminaries The mass/count distinction

Pseudo-partitive NPs with receptacle nouns

Coercion: Why are measure readings (usually) blocked

Discussion and Conclusions

Dot types

Inspired by Cooper's (2011) treatment in TTR

- TTR approach is close to Asher's (2011) proposal
- Asher's approach recommended by (but not implemented in) Partee and Borschev (2012)

$$\lambda x. \begin{bmatrix} cntnr = \begin{bmatrix} cbase = \lambda y. P(y) \\ ext = P(x) \\ prtn = \begin{bmatrix} cbase = \lambda y. Q(y) \\ ext = Q(x) \end{bmatrix} \end{bmatrix}$$

Requires some leeway with the type for x (here, no details about the requisite a rich type theory)

- ► *x* is a container/portion...
 - ...with the container aspect represented in the cntnr field
 - ...with the portion aspect represented in the prtn field

glasses of wine (container and portion)

- CL derives a relational container • portion concept
- ▶ [[CL]]^{S_i}([[glasses]]) could be stored as a discrete sense
- *S_i* ensures apportioning of contained stuff

$$\begin{bmatrix} CL \end{bmatrix}^{S_i} = \lambda F.\lambda G.\lambda s.\lambda x. \\ \begin{bmatrix} cntnr = \begin{bmatrix} cbase = cbase(F(x)) \\ ext = ext(F(x)) \\ restr = \forall y \exists z. [y \sqsubseteq x \land cbase(F(x))(y) \rightarrow ext(G(z)) \land contain(y, z)] \end{bmatrix} \\ prtn = \begin{bmatrix} cbase = \lambda y. s(cbase(G(x)))(y) \\ ext = \lambda y. * s(ext(G(y)))(x) \\ restr = \forall y. \exists w. \exists z. [y \sqsubseteq x \land cbase(G(x))(y) \rightarrow \\ cbase(F(x))(z)(w) \land contain(z, y)(w)] \end{bmatrix}$$

Container: E.g., glasses (F) containing wine (G) Portion: E.g., portions of wine (G) at S_i , that could each be contained in a glass (F).

$$\begin{bmatrix} CL \end{bmatrix}^{S_i}(\llbracket glasses \rrbracket^{S_i})(\llbracket wine \rrbracket^{S_i}) = \llbracket CL \rrbracket(\llbracket glasses \rrbracket(S_i))(\llbracket wine \rrbracket)(S_i) = \\ cntnr = \begin{bmatrix} cbase = \lambda y.S_i(O(glass))(y) \\ ext = S_i(O(glass))(x) \\ restr = \forall y \exists z.[y \sqsubseteq x \land S_i(O(glass))(y) \\ \rightarrow S_0(wine)(z) \land contain(y, z)] \end{bmatrix}$$

$$\lambda x. \begin{bmatrix} cbase = \lambda y.S_i(wine)(y) \\ ext = *S_i(wine)(x) \\ restr = \forall y.\exists w.\exists z.[y \sqsubseteq x \land S_i(wine)(y) \\ \rightarrow S_i(O(glass))(z)(w) \land contain(z, y)(w)] \end{bmatrix}$$

Container: Sums of/single individual glasses containing wine Disjoint cbase. Cumulative ext.

Portion: Portions of wine (wine partitioned by S_i) that could each be contained in a glass. Disjoint cbase. Cumulative ext.

Contents: Portions of wine (wine partitioned by S_i) that are actually contained in a glass ($w = w_0$). Disjoint cbase. Cumulative ext.

three glasses of wine (container and portion)

$$[NMod][[three]]([CL]]([glasses]](S_i))([wine]])(S_i)) = \\ \begin{cases} cntnr = \begin{cases} cbase = \lambda y.S_i(O(glass))(y) \\ ext = S_i(O(glass))(x) \\ restr = \forall y \exists z.[y \sqsubseteq x \land S_i(O(glass))(y) \\ \rightarrow ext(G(z)) \land contain(y, z)] \end{cases} \\ \\ \\ \lambda x. \\ prtn = \begin{cases} cbase = \lambda y.S_i(wine)(y) \\ cbase = \lambda y.S_i(wine)(y) \\ ext = *S_i(wine)(x) \\ restr = \forall y \exists w.\exists z.[y \sqsubseteq x \land S_i(wine)(y) \\ \rightarrow S_i(O(glass))(z)(w) \land contain(z, y)(w)] \\ restr_2 = \mu_{card}(x, \lambda y.S_i(wine)(y), 3) \end{cases} \end{cases}$$

From now on:

Abbreviate cntnr.restr and portn.restr to contain(glass, wine)

three glasses of wine (measure)

Compatible with, but does not presuppose, the syntactic analysis of Rothstein

 $\begin{bmatrix} \mathsf{MSR} \end{bmatrix}^{S_{i},\mathsf{vol}} \\ = \lambda \mathcal{F}.\lambda n.\lambda G.\lambda s.\lambda d.\lambda x. \begin{bmatrix} cbase = cbase(G(x)) \\ ext = ext(G(x)) \\ restr = \mu(x, d, \lambda z.prtn(\mathcal{F}(G))(z)(s), n) \end{bmatrix}$

 $[MSR]([CL]([glasses](S_i)))([three])([wine])(S_i)(vol)$

$$= \lambda x. \begin{bmatrix} cbase = \lambda y. S_0(wine)(y) \\ ext = S_0(wine)(x) \\ restr = \mu(x, vol, \lambda z. \begin{bmatrix} cbase = \lambda y. S_i(wine)(y) \\ ext = *S_i(wine)(z) \\ restr = contain(glass, wine) \end{bmatrix}, 3 \end{bmatrix}$$

Set of amounts of wine that measure 3 with respect to volume, and the property of being a glass-sized portion.

- Overlapping counting base.
- Quantized extension.

Summary: Interpretations for receptacle Ns in p-p NPs

Interpretation	Lexically encoded	Countability
Container (C)	Yes: dot type with (P)	Count
Portion (P)	Yes dot type with (C)	
Free portion	\circ container at some possible world	Count
Contents	\circ container at the actual world	Count
Measure (M)	No: derived, via MSR, from (P)	Mass

Felicity patterns in co-predication

Most Felicitous Least Felicitous C-P > M-P > C-M P-C > P-M > M-C

Outline

Introduction and main question

Background

Hypotheses and Predictions

Analysis within a frame based semantics

Preliminaries The mass/count distinction Pseudo-partitive NPs with receptacle nouns Coercion: Why are measure readings (usually) blocked

Discussion and Conclusions

Explanation 1: Resolving Type Mismatches

Type mismatches between CD and Mass N are resolved by retrieving a **container** • **contents** concept from the context

- Type mismatches: CD + Mass N
- Agents must coerce the Mass N into a Count N interpretation.
 - Requires supplying additional relational concept that is salient or conventional (e.g. container • contents concept for glass).
- Type mismatches are resolved by shifting to a container contents interpretation
 - No need to shift container contents to measure

Shifting container • contents to measure would CREATE A CLASH!

- Standard interpretation for [NP [CD] [N]] is to shift CD to an adjective (e.g. [[NMod]]([[three]])).
- ► Expression like [[MSR]]([[CL]])([[glass(es)]]) is NOT of the right type to combine with an adjectival numerical.

Explanation 2: Cognitive burden

Coercion typically involves shifting of meaning of LEXICALLY PROVIDED, overt linguistic material to resolve a type clash. E.g.

 $[\![wines]\!] \Rightarrow ([\![CL]\!]([\![glass(es)]\!]))([\![wine]\!])$

- [[CL]]([[glass(es)]]) is contextually, implicitly retrieved type shifter that operates on the meaning of lexically provided wine
- ► Measure interpretation would involve shifting of NON-LEXICALLY PROVIDED, IMPLICIT, content. E.g.

$$\begin{bmatrix} wines \end{bmatrix} \Rightarrow (\llbracket CL \rrbracket (\llbracket glass(es) \rrbracket)) (\llbracket wine \rrbracket) \\ \Rightarrow \llbracket MSR \rrbracket (\llbracket CL \rrbracket (\llbracket glass(es) \rrbracket)) (x : n) (\llbracket wine \rrbracket) \\ \end{bmatrix}$$

[MSR] is contextually, implicitly, provided type shifter that operates on the shifted, portion, meaning of [[wine]], which is the result of the application of the function [[CL]]([[glass(es)]]) to [[wine]].

Speculation: Such a process is too cognitively burdensome to achieve in most contexts.

Outline

Introduction and main question

Background

Hypotheses and Predictions

Analysis within a frame based semantics

Preliminaries The mass/count distinction Pseudo-partitive NPs with receptacle nouns Coercion: Why are measure readings (usually) blocked

Discussion and Conclusions

Discussion: The status of measure interpretations

Two hypotheses for the interpretation of p-p NPs

(H1) The container and portion interpretations are default interpretations;(H2) the measure interpretation is derived from the portion interpretation.

Can explain:

1. Variation in felicity of co-predication on the same p-p NP

Relation to other proposals:

- We need to formally mark the difference between
 - Default, lexically encoded interpretations
 - Derived interpretations
- Not obvious that MeasP (*three glasses*) can be understood as combining with N (*wine*) intersectively.

Discussion: Count/Mass a linguistic misunderstanding?

Two hypotheses for the interpretation of p-p NPs

(H1) The container and portion interpretations are default interpretations;(H2) the measure interpretation is derived from the portion interpretation.

Can also explain:

2. Why measure interpretations of p-p NPs like *two wines* are hard to get via coercion.

Some key results:

- The count/mass distinction is not based on a linguistic misunderstanding.
 - Explanation for 2. crucially turns on coercion as a type clash between lexically encoded meanings and repair strategy.
 - Any explanation if English has no grammaticized lexical mass/count distinction?
 How could accounts, such as Pelletier (2012) and Borer (2005), account for this puzzle?

Selected References I

Nicholas Asher. *Vagueness*. Cambridge University Press, Cambridge, 2011.

L. W. Barsalou. Frames, concepts, and conceptual fields. In *E. Kittay and A. Lehrer (eds.), Frames, fields, and contrasts: New essays in semantic and lexical organization*, pages 21–74. Erlbaum, 1992.

Hagit Borer. Structuring Sense I: In Name Only. OUP, 2005.

- Gennaro Chierchia. Mass nouns, vagueness and semantic variation. *Synthese*, 174:99–149, 2010. doi: 10.1007/s11229-009-9686-6.
- Robin Cooper. Copredication, quantification and frames. In Sylvain Pogodalla and Jean-Philippe Prost, editors, *Logical Aspects of Computational Linguistics, Number 6736 in Lecture Notes in Computer Science*, pages 64–79. Springer, 2011.

Selected References II

Jenny Doetjes. *Quantifiers and Selection*. PhD thesis, University of Leiden, 1997.

Karen Duek and Adrian Brasoveanu. The polysemy of container pseudo-partitives. *Proceedings of Sinn und Bedeutung 19*, pages 214–231, 2015.

Charles J. Fillmore. Frame semantics and the nature of language. Annals of the New York Academy of Sciences, 280(1):20–32, 1976. ISSN 1749-6632.

Scott Grimm. *Number and Individuation*. PhD Dissertation, Stanford University, 2012.

Keren Khrizman, Fred Landman, Suzi Lima, Susan Rothstein, and Brigitta R. Schvarcz. Portion readings are count readings, not measure readings. *Proceedings of the 20th Amsterdam Colloquium*, pages 197–216, 2015.

Selected References III

Manfred Krifka. Common nouns: A contrastive analysis of English and Chinese. In G.N. Carlson and F. J. Pelletier, editors, *The Generic Book*, pages 398–411. Chicago University Press, 1995.

Fred Landman. Indefinites and the Type of Sets. Blackwell, 2004.

- Fred Landman. Count Nouns–Mass Nouns–Neat Nouns–Mess nouns. The Baltic International Yearbook of Cognition, Logic and Communication, 6:1–67, 2011.
- Fred Landman. Iceberg semantics for count nouns and mass nouns: The evidence from portions. *The Baltic International Yearbook of Cognition Logic and Communication*, 11:1–48, 2016.
- S. Löbner. Evidence for frames from human language. In *Frames and concept types*, pages 23–67. Springer International Publishing, 2014.

Selected References IV

Barbara H. Partee and Vladimir Borschev. Sortal, relational, and functional interpretations of nouns and russian container constructions. *Journal of Semantics*, 29:445–486, 2012.

- Francis Jeffry Pelletier. Lexical nouns are both +MASS and +COUNT, but they are neither +MASS nor +COUNT. In Diane Massam, editor, *Count and mass across languages*, pages 9–26. Oxford University Press, 2012.
- James Pustejovsky. Type coercion and lexical selection. In James Pustejovsky, editor, *Semantics and the Lexicon*, pages 73–94. Kluwer. Dordrecht, 1993.

James Pustejovsky. The Generative Lexicon. MIT Press, 1995.

- Susan Rothstein. Counting and the mass/count distinction. *Journal* of Semantics, 27(3):343–397, 2010. doi: 10.1093/jos/ffq007.
- Susan Rothstein. Counting, measuring and the semantics of classifiers. *The Baltic International Yearbook of Cognition, Logic and Communication*, 6:1–41, 2011.

Selected References V

- Susan Rothstein. Counting and measuring: A theoretical and crosslinguistic account. *The Baltic International Yearbook of Cognition Logic and Communication*, 11:1–49, 2016.
- Susan Rothstein. *Semantics for Counting and Measuring*. Cambridge University Press, 2017.
- Peter R. Sutton and Hana Filip. Restrictions on subkind coercion in object mass nouns. *Proceedings of Sinn und Bedeutung 21*, page (To appear), 2017. Preprint available at: https://sites.google.com/site/sinnundbedeutung21/ proceedings-preprints.

Thank you very much for listening!

This research was funded by the DFG as part of CRC 991: Structures of representations in language, cognition and science. Thanks to the audience at the Workshop on Approaches to Coercion and Polysemy (CoPo 2017) in Oslo.

sfb991.uni-duesseldorf.de/c09/slides/